PHYSICS WITH HELIOS & IN-FLIGHT RADIOACTIVE BEAMS

Calem R. Hoffman, Physics Division, Argonne National Laboratory July 13, 2017

TALK OUTLINE

- overview of the device at ATLAS
- overview of in-flight beams
- details of in-flight production / tuning
- overview of measurements with in-flight beams
- a few physics examples
- new understanding from systematic data
- future & ongoing endeavors (AIRIS, Si Array, tracking, electronics, etc.)

HELIOS AT ARGONNE NAT. LAB.

Wuosmaa (2007), Lighthall (2010)

ATLAS ACCELERATOR LAYOUT

$ho \, ightarrow$ U, < 15 MeV, few hundred pnA

www.phy.anl.gov/atlas

IN-FLIGHT BEAM PRODUCTION AT ATLAS

cryo-gas/Be target \rightarrow solenoid \rightarrow rebuncher \rightarrow momentum selection

typically <100 pnA for gas target & up to 300 pnA for Be target

Harss (2000)

DRAWING OF ACTUAL BEAM LINE LAYOUT

BEAM TUNING PROCEDURE

typical procedure that has been used for in-flight beam tune to HELIOS

tune primary stable beam (straight) onto the HELIOS target position

insert production target to produce lower energy primary beam

- ▶ identify q states
- tune largest q state to HELIOS target

scale optical elements to calculated in-flight \sqrt{EA}/q value

identify beam of interest via ΔE -TOF or other means, e.g., β decay

optimize rate (not purity in most cases) manually

IMPACT OF BEAM TUNE ON HELIOS RESOLUTION

HELIOS requires a straight & centered beam tune

Beam offset (mm)	ΔE (keV), 5° c.m.	ΔE (keV), 15° c.m.	ΔE (keV), 30° c.m
0	0	0	0
1	42	13	4
2	85	25	8
3	127	38	12
4	169	51	16
5	212	64	20
10	424	127	39
Angle (mrad, deg)	ΔE (keV), 5° c.m.	ΔE (keV), 15° c.m.	ΔE (keV), 30° c.m.
0, 0	(1.318 MeV)	(1.993 MeV)	(4.219 MeV)
1, 0.06	0.6	2.4	8.2
3, 0.17	1.7	7.2	24
5, 0.29	2.9	12	40
10, 0.57	5.7	24	79
15, 0.86	8.5	36	118
20, 1.15	11	47	156
25, 1.43	14	58	194

EXAMPLE OF IDENTIFICATION OF ¹⁷N

¹⁸O + Be at \sim 15 MeV/u, >10⁴ pps, purity ranged from 1-20%

identification confirmed via γ -ray measurement of ¹⁷N eta decay

EXAMPLE OF IDENTIFICATION OF ²¹F

 ^{22}Ne + Be at ${\sim}11$ MeV/u, ${>}10^4$ pps, purity ranged from 0.1-80%

identification confirmed via γ -ray measurement of ²¹F β decay

LIST OF IN-FLIGHT BEAMS USED AT ATLAS

nuclear reactions, astrophysics, structure, & fundamental symmetries

IN-FLIGHT BEAMS USED W/ HELIOS

spanning 2007 - present

rates from $\sim 10^4$ -10⁶ pps, newly realized capability for producing isomer beams

SUMMARY OF REACTIONS W/ IN-FLIGHT BEAMS

resolutions ranging from \sim 100 keV - 350 keV beam quality & target thickness dominate resolution

neutron adding (d,p)

- ¹²B Back [ANL/WMI/MAN] PRL (2010)
- ¹³B Bedoor [WMI] PRC (2013)
- ¹⁵C Wousmaa [WMI] PRL (2010)
- ^{16g, m}N Perdikakis [CMU]
- ¹⁷N Hoffman [ANL] PRC (2013)
- ¹⁹O Hoffman [ANL] PRC (2012)
- ^{18g, m}F Santiago [LSU/ANL]
- ²¹F Chen [ANL]

proton removal (d,³He)

- ¹³B Rogers [ANL/UMASS]
- ^{14,15}C Bedoor [WMI] PRC (2016)
- **p**n removal (d, α)
 - ^{14,15}C Wuosmaa [WMI] PRC (2014)
 - ¹⁵O Wuosmaa [WMI/UCONN]
- other reactions
 - (t,p) ¹²B Kuvin [UCONN]

SAMPLE OF PHYSICS RESULTS

- no exotic excitation modes in ¹⁶C
- mixing between 0⁺_{1,2} states agrees w/ USD interactions

- population of "stretched" configurations in B isotopes
- unique configurations test theory

proton occupancy described by p – sd interactions

Wuosmaa (2014)

Bedoor (2016)

well-known inversions of the $1s_{1/2}$ - $0d_{5/2}$ neutron orbitals in N=9 isotones

similar trends identified in the *N*=9 & 11 isotones, same physics driving change? Bedoor (2013), Hoffman (2013)

systematic investigation of single-neutron states in light nuclei

 $\mathbf{E_n} = \mathbf{E_x} - \mathbf{S_n} \rightarrow \text{Proximity of state to neutron separation energy}$

ordering is primarily defined by proximity of s-orbital to threshold

Hoffman, Kay & Schiffer (2014,2016)

- Woods-Saxon calculations highlight change in $\ell = 0$ behavior near neutron threshold
- due to extended *s*-wave wavefunction → gives rise to nuclear halo (and other interesting phenomena)
- data also reproduced quantitatively
- threshold behavior is a global feature of all *l* values near their potential barrier tops

ordering is primarily defined by proximity of s-orbital to threshold

Hoffman, Kay & Schiffer (2014,2016)

- Woods-Saxon calculations highlight change in ℓ = 0 behavior near neutron threshold
- due to extended *s*-wave wavefunction → gives rise to nuclear halo (and other interesting phenomena)
- data also reproduced quantitatively
- threshold behavior is a global feature of all *l* values near their potential barrier tops

ordering is primarily defined by proximity of s-orbital to threshold

Hoffman, Kay & Schiffer (2014,2016)

- Woods-Saxon calculations highlight change in $\ell = 0$ behavior near neutron threshold
- due to extended *s*-wave wavefunction → gives rise to nuclear halo (and other interesting phenomena)
- data also reproduced quantitatively
- threshold behavior is a global feature of all *l* values near their potential barrier tops

SD ORDERING OUTSIDE OF N=50 & 126

degeneracy of sd orbitals & possible halo in ⁷⁹Ni

Thomas (2007), Sharp (2013)

- Woods-Saxon calculations highlight change in $\ell = 0$ behavior near neutron threshold
- due to extended *s*-wave wavefunction → gives rise to nuclear halo (and other interesting phenomena)
- data also reproduced quantitatively
- threshold behavior is a global feature of all *l* values near their potential barrier tops

EVOLUTION OF THE N=21 S-O ENERGIES

spin-orbit energies between the $1p_{3/2}$ & $1p_{1/2}$ neutron orbitals

various W-S parameters explored & trend is robust (orange band)
 weak binding effect can account for S-O energy splitting trend
 ³⁴Si "bubble" & reduced S-O potentials second order effects

Burgunder (2014), Grasso (2009, 2015), Kay (2017)

SINGLE-PARTICLE STATES OUTSIDE N=50 & 82

systematic tests of the tensor force

- ¹³⁶Xe(d,p) & ⁸⁶Kr(d,p)
- <100 keV resolutions (target thickness)</p>
- excellent agreement w/ expectation of np tensor force

Kay (2011), Sharp (2013), Talwar (2017)

ONGOING & FUTURE WORK the ${}^{21}F(d,p){}^{22}F$ reaction, ${}^{21}F$ produced at $>10^4$ pps

probes states belonging to:

 $\blacktriangleright \pi (0d_{5/2})^1 x \nu (0d_{5/2})^{-1}$

compare with ¹⁸F matrix elements

 first experiment utilizing digital daq upgrade

- ^{18g,m}F(*d*,*p*)¹⁹F
 - single-particle nature of aligned 13/2⁺ state

⁶He(d,d')

search for soft (low-lying) E1

²²Ne + Be at 11 MeV/u [250 pnA]

SUMMARY

- plethora of past & future physics opportunities w/ HELIOS at ATLAS utilizing in-flight short-lived beams
- transfer reaction production method allows for beam production at ideal energies for many direct reaction studies
- physics reaches from past and current measurements span specific case studies on, as well as global investigations of nuclear structure
- specifically, new insight on the evolution of orbitals & the role played by the threshold has been found in light nuclei
- the applicability of this new insight to other regions of the chart is an area of current & future research
- developments & improvements still underway on HELIOS device at ANL

Many thanks to all of the HELIOS collaboration members

DIGITAL DATA ACQUISITION

commissioned & used for an experiment in spring 2017

- comprised of Gretina digitizers & triggering hardware
- custom firmware written at Argonne
- µs of trace collected for each detectors
- opitmization of data analysis, reading of RF-Timing, and

BEAM TRACKING W/ MULTIPLE MCP STATIONS

improve resolution & statistics w/ in-flight beams at ATLAS

event-by-event tof & position (angle) information on HELIOS target at rates up to 10^6 pps & energies around ${\sim}10$ MeV/u

LIST OF POSSIBLE IN-FLIGHT BEAMS W/ AIRIS

dedicated in-flight separator for ATLAS - CY2019

beams expected at $>10^2$ pps (x10 uncertainties for $\ge 2n$ away from stability)

