The (d, p) reaction on ${ }^{206} \mathrm{Hg}$ an exploration of weak binding in heavy systems and of terra incognita

The (d, p) reaction on ${ }^{206} \mathrm{Hg}$

B. P. Kay ${ }^{1}$, C. R. Hoffman ${ }^{1}$, M. Avila ${ }^{1}$, S. Bottoni ${ }^{1}$, P. A. Butler ${ }^{2}$, S. J. Freeman ${ }^{3}$, L. P. Gaffney ${ }^{4}$, R. V. F. Janssens ${ }^{1}$, M. Labiche ${ }^{5}$, R. D. Page ${ }^{2}$, Zs. Podolyák ${ }^{6}$, R. Raabe ${ }^{7}$, P. H. Regan ${ }^{6}$, M. Rudigier ${ }^{6}$, D. Santiago-Gonzalez ${ }^{8,1}$, G. Savard ${ }^{1}$, J. P. Schiffer ${ }^{1}$, D. K. Sharp ${ }^{3}$, J. F. Smith ${ }^{4}$, R. Talwar ${ }^{1}$, and S. Zhu ${ }^{1}$. (And now Francesco Recchia et al. I assume)
${ }^{1}$ Argonne National Laboratory, ${ }^{2}$ University of Liverpool, ${ }^{3}$ University of Manchester, ${ }^{4}$ University of the West of Scotland, ${ }^{5}$ STFC Daresbury Laboratory, ${ }^{6}$ University of Surrey, ${ }^{7}$ KU Leuven, ${ }^{8}$ Louisiana State University

Requested shifts: 18
Beam: (ideally) $10 \mathrm{MeV} / \mathrm{u}^{206} \mathrm{Hg}, 1 \times 10^{6} \mathrm{~Hz},>99 \%$ purity Target: deuterated polyethylene $\left(\mathrm{CD}_{2}\right)_{\mathrm{n}}$ Installation: ISOL solenoidal spectrometer

INTC meeting, June 29, 2016

Motivation - general comments

$N=127$ isotones below Pb

- Terra incognita. Below Pb, around $N=126$, very little known (limited knowledge on masses, decays).
- Evolution of single-particle states has not been explored in nuclei around ${ }^{208} \mathrm{~Pb}$ as these require radioactive ion beams.
- Data on 2^{+}and 3^{-}in even nuclei allows us to make some assumptions.
- Few / no theoretical studies on single-particle excitations.

Motivation — loosely bound systems

s-states in loosely bound systems tend to linger below threshold-this feature seems to dominate the structural changes in light nuclei, and results in halo structures. Does this characteristic of s-states play a role in loosely bound heavier systems?

Aside - 'bubble’ nuclei

Proton occupancy

Neutron single-particle energies

As discussed by Calem this morning ... weak binding effects often ignored in favor of 'sensational' explanations

Motivation - r-process physics

The proposed measurement

The ${ }^{206} \mathrm{Hg}(d, p)$ reaction at $10 \mathrm{MeV} / \mathrm{u}$ using the ISOL Solenoidal Spectrometer (ISS)

Why $10 \mathrm{MeV} / \mathrm{u}$?

- Cross sections
- Angular momentum matching
- Angular distributions

Why ISS?

Resolution

- Charged-particle spectroscopy with <100keV Q-value resolution using thin targets

Efficiency

- Limited only by geometrical acceptance, not intrinsic efficiency of the detectors.
Direct probe of excited states
- Does not require coincident γ-rays deexciting the states (\therefore no concerns with isomers*, ground state, states not connected by γ-ray decay, etc).

*Isomers prevalent in the region around Pb
Cross sections estimated using DWBA code Ptolemy using standard parameterizations.

The ISOL Solenoidal Spectrometer (ISS)

No kinematic compression ($\mathrm{A}=0.31$), only modest kinematic shift ($\sim 17 \mathrm{keV} / \mathrm{mm}$) cf. other techniques.

The solenoidal-spectrometer technique

Simulation:

Marc Labiche, STFC Daresbury, using NPTool, assuming 40-keV intrinsic Si resolution ${ }^{1}$ and the geometry of the ANL array, beam properties of the linac². Comparable to actual performance of the HELIOS spectrometer at ANL. Location of states states in ${ }^{207} \mathrm{Hg}$ estimated from Woods-Saxon calculations ${ }^{3}$.

Beam time request -18 shifts

Assume:

$1 \times 10^{6} \mathrm{~Hz}$ of ${ }^{206} \mathrm{Hg}$, $>99 \%$ purity desired, $10 \mathrm{MeV} / \mathrm{u}$ desired, $75 \mu \mathrm{~g} / \mathrm{cm}^{2} \mathrm{CD}_{2}$ target, cross sections from DWBA calculations using standard parameterizations, 40% solid angle for Si array over angular range $10^{\circ} \leqslant \theta_{\mathrm{cm}} \leqslant 30^{\circ}$.

5 days (18 shifts) of beam on target yields $\mathbf{3 0 0 0}, \mathbf{1 1 3 0 0}, \mathbf{8 7 0 0}, \mathbf{9 0 0}$, and $\mathbf{1 5 0}$ counts in single-particle states populated in $\boldsymbol{\ell}=\mathbf{0}, \mathbf{2}, \mathbf{4}, \mathbf{6}$, and $\mathbf{7}$ transfer.

1 additional day is requested for the optimization and calibration of the set up (1 shift), target changes (1 shift), and to record background events (1 shift).

We hope to run ${ }^{208} \mathrm{~Pb}(\mathrm{~d}, \mathrm{p})$ prior to this run (maybe some people would like to join?)

Benchmark with ${ }^{208} \mathrm{~Pb}(\mathrm{~d}, \mathrm{p})$

Benchmark with ${ }^{208} \mathrm{~Pb}(\mathrm{~d}, \mathrm{p})$

Summary

- A study of the ${ }^{206} \mathrm{Hg}(d, p)$ reaction will be a flagship measurement—not possible at any other facility in the foreseeable future, particularly at this ideal energy for transfer.
- First ever exploration of single-particle structure of this region of the chart-terra incognita.
- Impact on nuclear structure - evolution of single-neutron states along N=126 - and on nuclear astrophysics, offering a first look at s-states below Pb on approach to the $3 r d r$-process peak (poorly understood in astrophysical models due to lack of data constraining them).
- Solenoidal spectrometer technique well proven, removing many complications plaguing other techniques. Ideal for extracting reliable spectroscopic factors from the data.
- Collaboration with the Argonne group-use of Si array, etc.

Supplemental material — beam purity

Use of VADLIS source

No evidence of ${ }^{206} \mathrm{Tl}$ or ${ }^{206} \mathrm{~Pb}$ in the time of flight spectrum

Supplemental material - beam purity

Use of VADLIS source

From ${ }^{208} \mathrm{Hg}$ measurements, some small amount of Pb expected, though predicted to be about <600 ions/s cf. $>10^{6}$ ions/s of Hg .

Supplemental material - time lines

Ordering of events prior to experimental campaign

- Cool down the solenoid
- Energize and verify the field
- Locate in ISOLDE hall
- Shield
- Install various mechanical components
- Install ANL Si array, electronics, DAQ
- Sources tests \& take data with test beams for the beam line commissioning thean

Supplemental material — ISS in situ

Schematic courtesy of Ian Burrows, STFC Daresbury

Supplemental material - ANL Si array

Position $\approx(X 1-X 2) / E$
(about ~0.5 mm)

Supplemental material - r-process path

Supplemental material - ${ }^{208} \mathrm{~Pb}(d, p)$ at $10 \mathrm{MeV} / \mathrm{u}$

Supplemental material - ${ }^{208} \mathrm{~Pb}(d, p)$ at $10 \mathrm{MeV} / \mathrm{u}$

Supplemental material - level structure

Supplemental material $-N=127$ isotones

Supplemental material - fragmentation

Fragmentation of the $s_{1 / 2}$ strength

Fragmentation of the neutron s-state strength would be valuable data for estimations of neutron-capture cross sections.

In ${ }^{207} \mathrm{~Pb}$, below $N=126$, the s-state strength appears at relatively high excitation energy, around $4.5-5 \mathrm{MeV}$ in at least 3 fragments.

In ${ }^{211}$ Po, one neutron outside 126 , but above $Z=82$, two strong fragments of the s-state strength are seen.

In ${ }^{207} \mathrm{Hg}$, the $3 s_{1 / 2}$ state could lie around 1.7 MeV in excitation energy (1.9 MeV below threshold like in $\left.{ }^{209} \mathrm{~Pb}\right)$, but could mix with the nearby core $2^{+}(1.1 \mathrm{MeV})$ resulting in fragments lying closer to threshold.

A measurement of the (d, p) reaction on ${ }^{206} \mathrm{Hg}$ would provide a clear assessment of the fragmentation.

