

The (d,p) reaction on ²⁰⁶Hg — an exploration of weak binding in heavy systems and of terra incognital

Ben Kay, Physics Division, Argonne National Laboratory ISS meeting, Manchester 2017

The (d,p) reaction on 206 Hg

B. P. Kay¹, C. R. Hoffman¹, M. Avila¹, S. Bottoni¹, P. A. Butler², S. J. Freeman³, L. P. Gaffney⁴, R. V. F. Janssens¹, M. Labiche⁵, R. D. Page², Zs. Podolyák⁶, R. Raabe⁷, P. H. Regan⁶, M. Rudigier⁶, D. Santiago-Gonzalez^{8,1}, G. Savard¹, J. P. Schiffer¹, D. K. Sharp³, J. F. Smith⁴, R. Talwar¹, and S. Zhu¹. (And now Francesco Recchia et al. I assume)

¹Argonne National Laboratory, ²University of Liverpool, ³University of Manchester, ⁴University of the West of Scotland, ⁵STFC Daresbury Laboratory, ⁶University of Surrey, ⁷KU Leuven, ⁸Louisiana State University

Requested shifts: 18

Beam: (ideally) 10 MeV/u ²⁰⁶Hg, 1×10⁶ Hz, >99% purity

Target: deuterated polyethylene (CD₂)_n

Installation: ISOL solenoidal spectrometer

INTC meeting, June 29, 2016

Motivation — general comments

N = 127 isotones below Pb

- **Terra incognita**. Below Pb, around N = 126, **very little known** (limited knowledge on masses, decays).
- Evolution of single-particle states has not been explored in nuclei around ²⁰⁸Pb as these require radioactive ion beams.
- Data on 2⁺ and 3⁻ in even nuclei allows us to make some assumptions.
- Few / no theoretical studies on single-particle excitations.

Motivation — loosely bound systems

s-states in loosely bound systems tend to linger below threshold—this feature seems to **dominate the structural changes in light nuclei**, and results in **halo structures**. Does this characteristic of *s*-states play a role in loosely bound heavier systems?

Aside — 'bubble' nuclei

As discussed by Calem this morning ... weak binding effects often ignored in favor of 'sensational' explanations

The proposed measurement

The ²⁰⁶Hg(*d*,*p*) reaction at 10 MeV/u using the ISOL Solenoidal Spectrometer (ISS)

Why 10 MeV/u?

- Cross sections
- Angular momentum matching
- Angular distributions

Why ISS?

Resolution

 Charged-particle spectroscopy with <100keV Q-value resolution using thin targets

Efficiency

 Limited only by geometrical acceptance, not intrinsic efficiency of the detectors.

Direct probe of excited states

- **Does not** require coincident γ -rays deexciting the states (: no concerns with isomers*, ground state, states not connected by γ -ray decay, etc).

The ISOL Solenoidal Spectrometer (ISS)

Kinematics: ²⁰⁶Hg(d,p), 10 MeV/u

No kinematic compression (A = 0.31), only **modest** kinematic shift (~17 keV/mm) *cf.* other techniques.

The solenoidal-spectrometer technique

Simulation:

Marc Labiche, STFC Daresbury, using NPTool, assuming 40-keV intrinsic Si resolution¹ and the geometry of the ANL array, beam properties of the linac². Comparable to actual performance of the HELIOS spectrometer at ANL. Location of states states in ²⁰⁷Hg estimated from Woods-Saxon calculations³.

¹Mean value for ANL Si array, J. C. Lighthall *et al.*, Nucl. Instrum. Methods Phys. Res. A 622, **97** (2010).

²Beam spot: 2.3 mm FWHM, Beam divergence: 1.8 mrad, Beam energy spread: 0.26%

³http://www.volya.net

Beam time request — 18 shifts

Assume:

1×10⁶ Hz of ²⁰⁶Hg, >99% purity desired, 10 MeV/u desired, 75 μg/cm² CD₂ target, cross sections from DWBA calculations using standard parameterizations, 40% solid angle for Si array over angular range 10° ≤ θ_{cm} ≤ 30°.

5 days (18 shifts) of beam on target yields 3000, 11300, 8700, 900, and 150 counts in single-particle states populated in ℓ = 0, 2, 4, 6, and 7 transfer.

1 additional day is requested for the optimization and calibration of the set up (1 shift), target changes (1 shift), and to record background events (1 shift).

We hope to run 208 Pb(d,p) prior to this run (maybe some people would like to join?)

Benchmark with ²⁰⁸Pb(d,p)

Benchmark with ²⁰⁸Pb(d,p)

Summary

- A study of the 206 Hg(d,p) reaction will be a flagship measurement—not possible at any other facility in the foreseeable future, particularly at this ideal energy for transfer.
- First ever exploration of single-particle structure of this region of the chart—terra incognita.
- Impact on nuclear structure evolution of single-neutron states along *N*=126 and on nuclear astrophysics, offering a first look at *s-states below Pb* on approach to the *3rd r-process peak* (poorly understood in astrophysical models due to lack of data constraining them).
- Solenoidal spectrometer technique well proven, removing many complications plaguing other techniques. Ideal for extracting reliable spectroscopic factors from the data.
- Collaboration with the Argonne group—use of Si array, etc.

Supplemental material — beam purity

Use of VADLIS source

No evidence of ²⁰⁶Tl or ²⁰⁶Pb in the time of flight spectrum

Supplemental material — beam purity

Use of VADLIS source

From ²⁰⁸Hg measurements, some small amount of Pb expected, though predicted to be about <600 ions/s cf. >10⁶ ions/s of Hg.

Supplemental material — time lines

Ordering of events prior to experimental campaign

- Cool down the solenoid
- Energize and verify the field
- Locate in ISOLDE hall
- Shield
- Install various mechanical components
- Install ANL Si array, electronics, DAQ
- Sources tests & take data with test beams for the beam line commissioning

2016

2017

Supplemental material — ISS in situ

Supplemental material — ANL Si array

- 4 sides, 6 elements long
- Detector size, 9×50 mm
- 700- μ m thick (e.g. ~10 MeV protons)
- Φ coverage, 0.48 of 2π
- $Ω_{element} = ~21 msr$ (depending on kinematics, field, etc)
- $-\Omega_{\text{array}} = \sim 500 \text{ msr}$

Supplemental material — r-process path

Supplemental material — 208 Pb (d,p) at 10 MeV/u

Supplemental material — 208 Pb (d,p) at 10 MeV/u

Supplemental material — level structure

Supplemental material — N = 127 isotones

Supplemental material — fragmentation

Fragmentation of the s_{1/2} strength

Fragmentation of the neutron s-state strength would be valuable data for **estimations of neutron-capture cross sections**.

In 207 Pb, below N = 126, the *s*-state strength appears at relatively high excitation energy, around 4.5-5 MeV in *at least 3 fragments*.

In ²¹¹Po, one neutron outside 126, but above Z = 82, **two strong fragments** of the *s*-state strength are seen.

In 207 Hg, the $3s_{1/2}$ state could lie around 1.7 MeV in excitation energy (1.9 MeV below threshold like in 209 Pb), but could mix with the nearby core 2⁺ (1.1 MeV) resulting in fragments lying closer to threshold.

A measurement of the (d,p) reaction on 206 Hg would provide a clear assessment of the fragmentation.

