Investigating the key rp process reaction ${}^{61}\text{Ga}(p, \gamma){}^{62}\text{Ge}$, via ${}^{61}\text{Zn}(d, p){}^{62}\text{Zn}$ transfer

G. Lotay¹, **D.T. Doherty¹**, W.N. Catford¹, Zs. Podolyak¹, P.A. Butler², R.D. Page², D.K. Sharp³, S.J. Freeman³, M. Labiche⁴, B.P. Kay⁵, C.R. Hoffman⁵, R.V.F. Janssens⁵, D.G. Jenkins⁶, N. Orr⁷, A. Matta⁷, L. P. Gaffney⁸

¹Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH. UK.

²Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE, UK.

³School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL. UK.

⁴STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD. UK.

⁵*Physics Division, Argonne National Laboratory, Argonne, Illinois, 60439. USA.*

⁶Department of Physics, University of York, Heslington, York, YO10 5DD. UK.

⁷LPC-ENSICAEN, IN2P3/CNRS et Universite de Caen, 1405 Caen, FRANCE.

⁸ ISOLDE, CERN

ISS meeting, Manchester, 13th July, 2017

The observation of X-ray bursts is interpreted as thermonuclear explosions in the atmosphere of a neutron star in a close binary system.

As temperature and density at the surface of the neutron star increase, the CNO cycles breakout into the *rp* process.

Sensitivity studies highlight the key reactions for understanding these bursts $\rightarrow {}^{61}Ga(p,\gamma){}^{62}Ge$ suggested as being particularly important

Effect on the X-ray burst light curve from varying the 61 Ga(p, γ) 62 Ge reaction rate within its associated uncertainties.

Effect on the final abundances from varying the 61 Ga(p, γ) 62 Ge reaction rate within its associated uncertainties.

TABLE 19

Summary of the Most Influential Nuclear Processes, as Collected from Tables 1–10

Reaction	Models Affected
$^{12}\mathrm{C}(\alpha, \gamma)^{16}\mathrm{O}^{\mathrm{a}}$	F08, K04-B2, K04-B4, K04-B5
$^{18}\text{Ne}(\alpha, p)^{21}\text{Na}^{a}$	K04-B1 ^b
$^{25}\text{Si}(\alpha, p)^{28}\text{P}$	K04-B5
$^{26g}Al(\alpha, p)^{29}Si$	F08
$^{29}S(\alpha, p)^{32}C1$	K04-B5
$^{30}P(\alpha, p)^{33}S$	K04-B4
${}^{30}S(\alpha, p){}^{33}C1$	K04-B4, ^b K04-B5 ^b
$^{31}Cl(p, \gamma)^{32}Ar$	K04-B1
$^{32}S(\alpha, \gamma)^{36}Ar$	K04-B2
${}^{56}\text{Ni}(\alpha, p){}^{59}\text{Cu}$	S01, ^b K04-B5
${}^{57}{ m Cu}(p, \gamma){}^{58}{ m Zn}$	F08
59 Cu(<i>p</i> , γ) ⁶⁰ Zn	S01, ^b K04-B5
${}^{61}\text{Ga}(p, \gamma){}^{62}\text{Ge}$	F08, K04-B1, K04-B2, K04-B5, K04-B6
65 As $(p, \gamma)^{66}$ Se	K04, ^b K04-B1, K04-B2, ^b K04-B3, ^b K04-B4, K04-B5, K04-B6
69 Br(<i>p</i> , γ) ⁷⁰ Kr	K04-B7
75 Rb(<i>p</i> , γ) ⁷⁶ Sr	K04-B2
82 Zr(<i>p</i> , γ) 83 Nb	K04-B6
84 Zr(<i>p</i> , γ) 85 Nb	K04-B2
84 Nb $(p, \gamma)^{85}$ Mo	K04-B6
85 Mo(p, γ) 86 Tc	F08
86 Mo(p, γ) 87 Tc	F08, K04-B6
87 Mo(p, γ) 88 Tc	K04-B6
92 Ru $(p, \gamma)^{93}$ Rh	K04-B2, K04-B6
93 Rh $(p, \gamma)^{94}$ Pd	K04-B2
${}^{96}\text{Ag}(p, \gamma){}^{97}\text{Cd}$	K04, K04-B2, K04-B3, K04-B7
102 In(p, γ) 103 Sn	K04, K04-B3
103 In(p, γ) 104 Sn	K04-B3, K04-B7
103 Sn(α , p) 106 Sb	S01 ^b

A. Parikh, J. Jose, F. Moreno and C. Iliadis, Astrophys. J. Suppl. Ser. 178, 110 (2008).

Summary of the Most Influential Nuclear Processes, as Collected from Tables 1–10

Reaction	Models Affected
$^{12}C(\alpha, \gamma)^{16}O^a$	F08, K04-B2, K04-B4, K04-B5
$^{18}\text{Ne}(\alpha, p)^{21}\text{Na}^{a}$	K04-B1 ^b
$^{25}\text{Si}(\alpha, p)^{28}\text{P}$	K04-B5
$^{26g}\text{Al}(\alpha, p)^{29}\text{Si}$	F08
$^{29}S(\alpha, p)^{32}Cl$	K04-B5
$^{30}P(\alpha, p)^{33}S$	K04-B4
$^{30}S(\alpha, p)^{33}Cl$	K04-B4, ^b K04-B5 ^b
$^{31}Cl(p, \gamma)^{32}Ar$	K04-B1
$^{32}S(\alpha, \gamma)^{36}Ar$	K04-B2
${}^{56}\text{Ni}(\alpha, p){}^{59}\text{Cu}$	S01, ^b K04-B5
${}^{57}\text{Cu}(p,\gamma){}^{58}\text{Zn}$	F08
$^{59}Cu(p,\gamma)^{60}Zn$	S01, ^b K04-B5
${}^{61}\text{Ga}(p, \gamma){}^{62}\text{Ge}$	F08, K04-B1, K04-B2, K04-B5, K04-B6
65 As $(p, \gamma)^{66}$ Se	K04, ^b K04-B1, K04-B2, ^b K04-B3, ^b K04-B4, K04-B5, K04-B6
69 Br(<i>p</i> , γ) ⁷⁰ Kr	K04-B7
75 Rb(p, γ) ⁷⁶ Sr	K04-B2
82 Zr(<i>p</i> , γ) ⁸³ Nb	K04-B6
84 Zr(<i>p</i> , γ) 85 Nb	K04-B2
84 Nb(<i>p</i> , γ) ⁸⁵ Mo	K04-B6
85 Mo(p, γ) ⁸⁶ Tc	F08
86 Mo(p, γ) ⁸⁷ Tc	F08, K04-B6
87 Mo(<i>p</i> , γ) ⁸⁸ Tc	K04-B6
92 Ru $(p, \gamma)^{93}$ Rh	K04-B2, K04-B6
93 Rh(p, γ) 94 Pd	K04-B2
$^{96}Ag(p, \gamma)^{97}Cd$	K04, K04-B2, K04-B3, K04-B7
102 In $(p, \gamma)^{103}$ Sn	K04, K04-B3
103 In(p, γ) ¹⁰⁴ Sn	K04-B3, K04-B7
103 Sn(α , p) 106 Sb	S01 ^b

A. Parikh, J. Jose, F. Moreno and C. Iliadis, Astrophys. J. Suppl. Ser. 178, 110 (2008).

States of Interest in ⁶²Zn

Proton separation energy in ⁶²Ge is 2053(145) keV

- uncertainty from mass data

Mirror energy differences from theory

Rate expected to be dominated by low-spin states

3043 keV \mathbf{O}^+ 2884 keV _____ 2+ 2803 keV _____ 2+ 2744 keV _____ 4+ 2384 keV _____ 3+ 2330 keV _____ \mathbf{O}^+ 2186 keV _____ 4+

⁶²Zn

The Spectroscopic factor (C²S) is directly related to the proton widths and, hence, the resonance strengths.

$$\omega\gamma = \omega \frac{\Gamma_p \Gamma_\gamma}{\Gamma_p + \Gamma\gamma} \approx \omega \frac{\Gamma_p \Gamma\gamma}{\Gamma_\gamma} \approx \omega \Gamma_p. \qquad \Gamma_p = C^2 S \Gamma_{sp}$$

Will be extracted from the proton yields with the ADWA code TWOFNR. Recent success for the astrophysically important ²⁷Al-²⁷Si system. V. Margerin et al., PRL **115** 062701 (2015)

C²S of mirror analog states are expected to agree within 20%

N. K. Timofeyuk, R. C. Johnson, and A. M. Mukhamedzhanov, PRL **91**, 232501 (2003)

N. K. Timofeyuk, P. Descouvemont, and R. C. Johnson, Eur. Phys. J. A **27**, 269 (2006).

- 4T superconducting solenoid.
- Obtained as MRI magnet from Brisbane.
 - Arrived @ CERN in April 2016.
- Dedicated to transfer reactions with HIE-ISOLDE.
- New Si array designed and under construction (ready after LS2).
 - First experiments with ANL array.

d(⁶¹Zn,p)⁶²Zn, 7.5 MeV/u, 2.5 T

 $10^{\circ} < \theta_{CM} < 30^{\circ} \Rightarrow$ protons emitted at backward lab angles

Proton energies ~10 MeV

Know $^{62}\mbox{Zn}$ level scheme folded with 75-keV resolution obtained with HELIOS type device and detectors

 $10^{\circ} < \theta_{CM} < 30^{\circ} \Rightarrow$ protons emitted at backward lab angles

Proton energies ~10 MeV

7.5 MeV/u 61 Zn beam of minimum intensity 4 x 10⁵ pps (ZrO₂ target)

Ga contamination to be suppressed with RILIS ionisation of Zn

Stable ⁶¹Ni contaminant highlighted in TAC meeting, known spectrum. See below.

Problems from transfer on light elements from EBIS charge breeder?

O. Karban et al., Nucl. Phys. A366, 68 (1981).

'Feedback' from the INTC

"The presented physics case is certainly of great interest"

BUT

"the proposal is premature considering that the instrument to be used will not be available in 2017 and furthermore two proposals for the same setup have already been approved in 2016"

Extensions and other reactions of Astrophysical Interest

- With beam intensities > 10⁵ pps can look for p-γ coincidences with a suitable array.
- (d,p) reactions on the neutron-rich isotopes as a surrogate for neutroncapture reactions
- New beams of neutron-deficient isotopes becoming available with ZrO₂ targets.
 - Transfer around ⁵⁶Ni ($t_{1/2}$ = 6 days), rp-process waiting point?
 - Germanium/gallium isotopes along the rp-process path

Thank you very much!

G. Lotay¹, **D.T. Doherty¹**, W.N. Catford¹, Zs. Podolyak¹, P.A. Butler², R.D. Page², D.K. Sharp³, S.J. Freeman³, M. Labiche⁴, B.P. Kay⁵, C.R. Hoffman⁵, R.V.F. Janssens⁵, D.G. Jenkins⁶, N. Orr⁷, A. Matta⁷, ⁸L. P. Gaffney

¹Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH. UK.
 ²Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE, UK.
 ³School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL. UK.
 ⁴STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD. UK.
 ⁵Physics Division, Argonne National Laboratory, Argonne, Illinois, 60439. USA.
 ⁶Department of Physics, University of York, Heslington, York, YO10 5DD. UK.
 ⁷LPC-ENSICAEN, IN2P3/CNRS et Universite de Caen, 1405 Caen, FRANCE.
 ⁸ ISOLDE. CERN

ISS meeting, Manchester, 13th July, 2017