FEE64 system software interface

Firmware Version date 25th May 2016

The interface is basically an addressed area of 32 bit memory containing controls for the data acquisition readout.

All offsets and addresses are 32 bit word oriented. Multiply by 4 to get byte oriented PPC addresses.

Local controls

Base Address : 0x0000

0:32 bit register.

Bit 0 controls the tick timer -5mS fixed interval.

Bit 1 controls the Peak hold reset applied 2uS after tick for 2uS.

Bits $11 \Rightarrow 8$: control how many 5mS intervals between resets.

Bit 15: set to '1' to reset Timestamp modules

Bit 16: set to '0' to invert ASIC1 OR16 signal for Fast NIM output.

Bit 17: set to '0' to invert ASIC2 OR16 signal for Fast NIM output.

Bit 18: set to '0' to invert ASIC3 OR16 signal for Fast NIM output.

Bit 19: set to '0' to invert ASIC4 OR16 signal for Fast NIM output.

1:32 bit status register

Bit 0 : Lock Detect bit from LMK03200 #1

Bit 1 : Lock Detect bit from LMK03200 #2

Bit 2 : Lock detect from the internal PLL & DCM for the mux clock.

2 : ADC control register . 32 bit register. (current default is all powered off at FPGA load). Boot software enables and calibrates.

- Bit 0 : =>'1' Power down Flash ADC #1. Bit 1 : =>'1' Power down Flash ADC #2. Bit 2 : =>'1' Power down Flash ADC #3. Bit 3 : =>'1' Power down Flash ADC #4. Bit 4 : =>'1' Power down Flash ADC #5. Bit 5 : =>'1' Power down Flash ADC #6. Bit 6 : =>'1' Power down Flash ADC #7. Bit 7 : =>'1' Power down Flash ADC #8.
- 3 : Trigger output control register. 32 bit register.

Code	Logic signal
0	ASIC1_Data_Ready
1	ASIC1_rdo_range AND ASIC1_Data_Ready
2	ASIC2_rdo_range AND ASIC2_Data_Ready
3	Led_trigger(0)
4	OR64

5	Multiplicity Trigger
6	Sync_registered
7	Force_capture
8	ASIC1_OR_16
9	ASIC2_OR_16
10	ASIC3_OR_16
11	ASIC4_OR_16
12	OR of all four ASICs OR16s
13	Led_trigger(1)
14	Logic '0'
15	Readout_done(1)

Bit 4: '0' Trigger is logic signal selected by bits 3 to 0. '1' Trigger is internally is logic signal selected by bits 3 to 0 delayed by the number of 100Mhz clocks as defined by the delay register (#6). The pulse is forced to be 4 clocks wide and have a delay of at least 10 clocks between pulses.

- 4 : Pulser rate register. 32 bit register. \rightarrow 2uS pulse (not used in this version) Bits 15 => 0 : Rate for pulser. Default is 0x7D0 => 250Hz.
- 5 : LMK03200 control register. 8 bit register. Default is 0x07.
 - Bit 0 : SYNC pin on both LMK03200. Active low
 - Bit 1 : GOE pin on both LMK03200. '1' enables the clock outputs
 - Bit 2 : MUX_CLK_SEL. '1' selects the internal 50Mhz oscillator.
 - '0' BuTiS clock from the HDMI connector.
 - Bit 3 : BuTiS clock divider reset. Active low reset of the divider
 - Bit 4 : BuTiS clock divider select /4. '1' selects divided input clock.

'0' bypasses divider.

Bit 5 : Mux clock DCM reset. Set to '1' to reset the DCM if it hasn't locked

6 : Trigger delay. 32 bit register.

Bits 31 to 0: The number of 10nS clocks to delay the Trigger output.

7 : Correlation interface control register. 4 bit register. Tri-state if bit set to '0'. Default is '0'/.

Bit 0: enable drive of Correlation Clock

Bit 1: enable drive of Correlation Reset.

Bit 2: enable drive of Correlation Reset Request.

Bit 3: enable drive of Correlation Trigger.

9 : Wave Capture and ADC reset control. 8 bit register. Set back to zero before continuing.

Bit 0: '1' resets the eight Q8 modules (*Q8 simple.vhd*)

Bit 2: '1' resets the Wave form Capture DMA (*wcap dma.vhd*)

Bit 7: '1' resets the PowerPC.

10 : Firmware Version number as a character string.

All other addresses return the Hexadecimal Firmware Version Code. DDMYVVII DD = day, M = month, Y = year 0 is 2016, VV = version code, II = increment number

Temperature measurements

Offset	Name	Function	Comment
0	Start0	Initiates Virtex temperature	Write to this address starts the
		measurement	conversion.
1	Value0	13 bit signed temperature	Bits 0 to 11 <= value (LSB =
		measurement. Read only.	0.0625 degrees).
			Bit 12 <= sign bit
2	Start1	Initiates PSU temperature	Write to this address starts the
		measurement	conversion.
3	Value1	13 bit signed temperature	Bits 0 to $11 \le$ value (LSB =
		measurement. Read only.	0.0625 degrees).
			Bit $12 \ll \text{sign bit}$
4	Start2	Initiates ASIC temperature	Write to this address starts the
		measurement	conversion.
5	Value2	13 bit signed temperature	Bits 0 to $11 \le$ value (LSB =
		measurement. Read only.	0.0625 degrees).
			Bit 12 <= sign bit
8	Status		Bit 0 => interface busy
			Bits 1 to $3 \Rightarrow$ Hold state (should
			be exclusive) shows the last
			device selected.

Base address 0x200

There is one state machine which accesses two MAX6627 devices on the FEE64 and one on the mezzanine.

The access is exclusive. If access is attempted to more than one device at a time then rubbish will result!

The interface should take about 4 to 5 us to complete an access.

The MAX6627 takes 500ms between samples. It is recommended to leave at least this period between samples.

ASIC Readout buffer and controls

Base address 0x300

Offset	Name	Function	Comment	
0	Control		Bit 0 <= '1' : Enable readout	
			Bit 14 <= '1' : RDO_reset	
			Bit 16 <= '1' : SYNC readout clock.	
1	State	The state of each of	Bits 0-6 : bit_count	
	machine	two stages in the	Bits 8-15 : readout state	
	positions	readout process	Bits 16-19 : gather state	
2	Status		Bit 1 <= readout busy	
			Bit 3 <= time fifo full	
			bit 4 <= Last Stage Fifo empty	
			bit 5 <= Last Stage Fifo full	
			bit 6 <= Last Stage Fifo prog empty	
			bit 7 <= Last Stage Fifo prog full	
			bit 8 <= start_adc1	
			bit 9 <= start_adc2	
			bit 10 <= start_adc3	
			bit 11 <= start_adc4	
			bit $12 \le \text{time fifo} \le 200$	
			bit $13 \le time fifo > 500$	
			bit 14 <= Pause signal	
			1.420 < ACICIEC 1 < C11	
			bit $28 \le ASICI FIIO almost full$	
			bit $29 \le ASIC2$ Filo almost full bit $20 \le ASIC2$ Filo almost full	
			bit $30 \le ASIC3$ Filo almost full bit $21 \le ASIC4$ Fife almost full	
4	ASIC	The state of each of the	Dit $31 \le ASIC4$ Filo annost full Dite 0.4: ASIC1	
4	ASIC	four ASIC readout	DIIS 0-4. ASIC 1 Dits $8, 12$: ASIC 2	
	states	machines	Bits $16-20$: ASIC2	
	states	machines.	Bits 24-28: ASIC4	
6	ASIC resets		Bits $3 \Rightarrow 0$: directly control resets	
7	ASIC_ICSCCS	Enable each ASIC	Bit $0 \le 1^{\circ}$ Enable ASIC1	
,	readout	readout circuit	Bit $1 \le 1^{\circ}$ Enable ASIC2	
	enable	ioudout onoun	Bit $2 \le 1^{\circ}$ Enable ASIC3	
	•		Bit $3 \le 1$: Enable ASIC4	
8	Source	Allows a test counter to	Bit 0 : '0' selects normal data and	
-	select	be routed through the	'1' selects a counter	
		readout paths instead of		
		normal data		
9	ASIC Stamp	Result of SYNC	Bottom 8 bits of timestamp when	
	1	readout clock	SYNC arrives.	
12	Waiting	Counts the times any	Bits 31 to 0 : number of missed data	
	counter	ASIC has data and	readies during Pause.	
		buffers are full	Reset by Control register bit 14.	
13	Convert	The number of clocks	Bits 7 to 0 : Delay in 10nS	
	delay	to delay the start of	increments. Default is 700ns.	
		ADC conversion		

14	Time fifo	Bits 8 to 0 : how many events are
	data count	pending

ASIC and Info Event format

An Event consists of two 32 bit words in the GREAT event format.

Info Event format Identifier

Identifier	Description	Information field meaning or value	
1	Discriminator	Discriminator number	
		(ASIC#, Channel)	
2	SYNC pulse received	0	
3	Pause in readout	0	
4	Resume in readout	0	
5	Correlation Scalar bits LSW	Correlation Scalar[150]	
6	Correlation Scalar bits NSW	Correlation Scalar[3116]	
7	Correlation Scalar bits MSW	Correlation Scalar[4732]	

Correlation scalar status and controls

Offset	Name	Function	Comment
0	Control	4 bit register	Bit 0 <= '1' : Enable Correlation function
			Bit 1 <= '1' : Cause a RESET pulse on the
			Correlation output. Only if enable true.
			Reset after use.
1	Missed	Counts when a trigger	Bits 15 to 0 are the number of missed
	trigger	occurs during a pause	triggers. Set to 0 by reset.
	counter		
2	Status		Bit 0 <= fifo_empty
			Bit 1 <= fifo_prog_full
			Bit 24 to 16 : Number in Fifo
3	Scalar LSbs	Scalar read back	Scalar value from the counter bits 31 to 0
4	Scalar MSbs	Scalar read back	Scalar bits 47 to 32
5	Trigger	Value in 100ns steps to	Bits 31 to 0 are the delay value.
	Delay	wait from Correlation	Recommended to be set to 0x00000100 for
		Trigger to storing the	a 25.6uS delay . This should be enough for
		scalar value and the	all ADC conversions for a full 64 channel
		local timestamp	event.
6	Force	Write here forces an	
	trigger	Correlation trigger	

Base address 0x310

Correlation interface stores the value of the scalar after the programmable delay in a 64 deep FIFO

Fast NIM Signals on the MACB front panel are set up for

NIM out 0 : Clock. In Riken this is 25Mhz

NIM out 1 : Reset pulse.

NIM input 2 : Reset Request

NIM Input 3 : Correlation Trigger

Timestamp control

Base address 0x400

Offset	Name	Function	Comment
0	Control	Controls the timestamp	Bit 0 <= '1' enables the
			timestamp counter
			Bit 1 <= '1' enables the Corl
			reset signal to reset both the
			slave and the Master
			timestamp counter.
			Bit 3 <= '1' Resync request
1	Status	Status of the timestamp system	Bit 0 : Resync done
4	Timestamp	LSBs. Write to this register	Bits $31 \Rightarrow 0$: Timestamp
	readback	copies the timestamp into a	shadow bits 31 to 0.
	Shadow	shadow register.	
5	Timestamp	MSBs read only.	Bits $31 \Rightarrow 0$: Timestamp
	readback		shadow bits 63 to 32.
	shadow		
6	SYNC value	The bottom 18 bits of the	Bits 17=> 0 : Sync value
		counter to be used to check	
		when a SYNC pulse is	
		received and used to load at	
		the same time.	
8	Timestamp	LSBs. Write to this register	
	load	loads the counter and sets the	
		value of the bottom 32 bits.	
9	Timestamp	MSBs. Write to this register	
	load	loads a register with the top 32	
		bits ready for loading into the	
		timestamp counter.	
10	Re-sync	LSBs. Loaded into the	The lower 18 bits are not
	value	timestamp counter when the	reloaded. They are always
		re-sync pulse is received	set by the sync pulse.
11	Re-sync	MSBs. Loaded into the	
	value	timestamp counter when the	
		re-sync pulse is received.	
12	200Mhz	Controls the 200Mhz clock	Bit 1 <= '1' reset the
	DCM		200Mhz DCM used by the
	controls		Master.
13	200Mhz	Results from the 200Mhz	Bit 16 : 200Mhz DCM
	DCM status	DCM	locked if '1'
14	SYNC error	Counts if the SYNC doesn't	Bits 15 to 0
	counter	arrive when expected.	

The timestamp is a 64 bit counter running at 100 Mhz.

Master timestamp counter controls

Base address 0x410

Offset	Name	Function	Comment
0	Control	Controls the timestamp	Bit 0 <= '1' enables the Master function and counter Bit 3 <= '1' Resync request
1	Status	Status of the timestamp system	Bit 0 : Resync done Bit 12 to 8 : Resync state machine.
2	Timestamp readback Shadow	LSBs. Write to this register copies the timestamp into a shadow register.	Bits $31 \Rightarrow 0$: Timestamp shadow bits 31 to 0.
3	Timestamp readback shadow	MSBs read only.	Bits $31 \Rightarrow 0$: Timestamp shadow bits 63 to 32.
4	Master SYNC value	The bottom 18 bits of the counter to be used to create the SYNC pulse when this unit is Master	Bits 17=> 0 : Master Sync value. Default = 0xA0
5	Timestamp load	LSBs. Write to this register loads the counter and sets the value of the bottom 32 bits.	
6	Timestamp load	MSBs. Write to this register loads a register with the top 32 bits ready for loading into the timestamp counter.	
7	Re-sync value	LSBs. If this unit is a master then this value is used to generate the re-sync pulse.	
8	Re-sync value	MSBs. If this unit is a master then this value is used to generate the re-sync pulse.	
9	SYNC alignment selection	Allows the output SYNC pulse to be shifted in 25% steps	Bits 1=>0 : Selects the shift percentage.

Discriminators buffer and controls

Base address 0x500

Offset	Name	Function	Comment
0	Control		Bit 0 : Enable
			Bit 1: \Rightarrow '1' to reset the
			Multiplicity Trigger logic.
2	Status		Bit 0: Enable
3	Missed	Counts when	Bits 15 to 0 are the number of
	discriminator	discriminator pattern	missed patterns. Set to 0 by reset
	activity	could not be stored due	
	counter	to Pause	
6	Mask_LSW	Disable selected	Bits $31 \Rightarrow 0$: '1' Mask channels 1
		channels	to 32 for discriminator readout
7	Mask_MSW	Disable selected	Bits $31 \Rightarrow 0$: '1' Mask channels
		channels	33 to 64 for discriminator readout
8	ASIC 1	Instantaneous value	Bits $15 \Rightarrow 0$ The state of the
	Discriminator		discriminator signals from the
	value		ASIC
9	ASIC 2	Instantaneous value	Bits $15 \Rightarrow 0$ The state of the
	Discriminator		discriminator signals from the
	value		ASIC
10	ASIC 3	Instantaneous value	Bits $15 \Rightarrow 0$ The state of the
	Discriminator		discriminator signals from the
	value		ASIC
11	ASIC 4	Instantaneous value	Bits $15 \Rightarrow 0$ The state of the
	Discriminator		discriminator signals from the
	value		ASIC
12	Multiplicity	Number of Triggers	Bits 6 to 0 : Number of
	Trigger	needs to <= this	Discriminators.
	Upper Limit	number.	
13	Multiplicity	Number of Triggers	Bits 6 to 0 : Number of
	Trigger	needs to \geq this	Discriminators.
	Lower Limit	number.	
14	Time	Number of 10nS	Bits 7 to 0 : Number of clocks for
	Window	clocks the condition	the Time Window.
		must be true before a	
		Trigger is generated	

Use Offset 3 : Trigger output control register setting 5 to connect the Multiplicity Trigger to the MACB Fast NIM output.

ASIC READOUT – DMA control and status

Base	address	0x600
------	---------	-------

Offset	Name	Function	Comment
0	Control		Bit 0 : Start DMA transfers
			Bit 15 : reset
1	State Machine		Bits 3:0 dma st
	status		Bits 15 : 8 state counter
2	Status		Bit 0: Dma_done
			Bit 1: mst_cmd_busy
			Bit 2: Burst_fifo_full
			Bit 3: Burst_fifo_empty
			Bit 4: dma_error
			Bit 5: dma_timeout
			Bit 6: block_low_done
			Bit 7 : block_high_done
			Bits 15:8 item_count
3	Start Address	32 bit address in	This must be at a boundary to
		SDRAM of allocated	accommodate the Memory size as the
		memory. (Bytes)	lsbs of the SDRAM address.
4	High Water	Where to flip between	This value must be less than
	Mark	High and Low blocks	(Buffer_size/2) -1
5	Block low	Count of the total	
	item counter	number of data bytes	
		transferred in the Low	
		block.	
6	Block high	Count of the number of	
	item counter	data bytes transferred in	
	F1 1	the High block.	
1	Flush	A write to bit 0 at this	Any write forces a Flush.
		address forces the	
		current block to	
0	Test counter	complete.	The comment velve of the incrementing
8	Test counter		test counter
0	Duffer size	(Dates)	The amount of moment evailable to
9	Buller_size	(Bytes)	this DMA shownol. The block size –
			this value /2
10	Source coloct		$\frac{1}{2}$
10	Source select		data stream
11	Plaak law	Write only	A write to this logation closes the
11	tokon	write only	A write to this location clears the Low Done flag and allows the block
	taken		to be used by the shannel
10	Plaat high	Write only	A write to this leastion clears the
12	takan	write only	A write to this location clears the High Done flag and allows the black
	Iakell		to be used by the channel
12	Waiting	\mathbf{D} and an $\mathbf{I}_{\mathbf{V}}$ (100) (h-)	In the used by the channel
15	w aning	Read only (100MInZ)	merements if a buffer isn't available

The memory start address and buffer size values are used to create two equal sized blocks of memory for storing events.

The two blocks are filled on a flip/flop basis with flags to indicate the completion and availability.

The 'flush' command will force the flip from one block to the next.

Wave Capture READOUT – DMA control and status

Offset	Name	Function	Comment
0	Control		Bit 0 · Start DMA transfers
Ũ	Connor		Bit 15 · reset
1	State		Bits 3:0 dma_st
1	Machine		Bits 15 · 8 state counter
	status		
2	Status		Bit 0: Dma_done
2	Status		Bit 1: mst cmd busy
			Bit 2: Burst fifo full
			Bit 3: Burst fifo empty
			Bit 4: dma_error
			Bit 5: dma_timeout
			Bit 6: block low done
			Bit 7 : block high done
			Bits 15:8 item count
2	Start Addrage	22 hit address in	This must be at a boundary to
5	Start Audress	SDP AM of allocated	accommodate the Memory size as
		momory (Putos)	the labe of the SDRAM address
	High Water	Where to flip between	This value must be less then
4	High water	Where to hip between	This value must be less than $(Duffer airs/2)$ 1
	Mark	High and Low blocks	(Buffer_size/2)-1
3	Block low	Count of the total	
	item counter	number of data bytes	
		transferred in the Low	
	D1 11'1	DIOCK.	
6	Block high	Count of the number of	
	item counter	data bytes transferred	
7	F1 1	in the High block.	A XX7 '4 4 41 ' 11 '11
/	Flush	Finish the current	Any Write to this address will
	Request	DMA and flip to the	cause a flush.
		next buffer	
8	Test counter		The current value of the
			incrementing test_counter
9	Buffer_size	(Bytes)	The amount of memory available to
			this DMA channel. The block size
			= this value /2
10	Source select		Bit 0 : '1' selects test_counter to
			the data stream
11	Block low	Write only	A write to this location clears the
	taken		Low Done flag and allows the
			block to be used by the channel
12	Block high	Write only	A write to this location clears the
	taken		High Done flag and allows the
			block to be used by the channel

Base address 0x700

The memory start address and buffer size values are used to create two equal sized blocks of memory for storing events.

The two blocks are filled on a flip/flop basis with flags to indicate the completion and availability.

FADC interface align and control

Base address 0x800 ADCs are currently aligned at boot time.

Offset	Name	Function	Comment
0	Control	Controls the ADC	Bit 0 : Set to '1' to start Alignment:
		serial alignment	bitAlignGo
			Bit 3: Set to enable the DCMs
2	Bit Align	Status of the bit	Bits 0-7 : Bit alignment done for each
	Done	alignment	chip when set.
3	Chip status		Bit 0 : Chip Align Done
			Bit 1: Clk50-Clk175 locked
			Bit 2 : Clk200 locked
			Bit 4 to 7 : IDELAYCTRL readies.
4	Word Align		Bit0-7 : Word Align Done for each of
	Status		the eight ADC chips

Carry out the following to all the ADCs to start the pattern generation for alignment.

Offset in ADC	Value	Comment
0x19	0x80	Load User pattern
0x1A	0x3F	
0x1B	0x80	
0x1C	0x3F	
0x0D	0x48	Set the mode to output the user pattern
0xFF	0x01	Load the values to the ADC registers

LED controls

Base address 0x900

Offset	Name	Function	Comment
0	ASIC1	LED controls	Bit 0-15: Threshold
			Bit 16: Polarity
1	LED enable	A bit for each LED	Bit 0-15: Enable Channel # for
	ASIC1		waveform capture.
2	ASIC2	LED controls	Bit 0-15 : Threshold
			Bit 16 : Polarity
3	LED enable	A bit for each LED	Bit 0-15: Enable Channel # for
	ASIC2		waveform capture.
4	ASIC3	LED controls	Bit 0-15 : Threshold
			Bit 16 : Polarity
5	LED enable	A bit for each LED	Bit 0-15: Enable Channel # for
	ASIC3		waveform capture.
6	ASIC4	LED controls	Bit 0-15 : Threshold
			Bit 16 : Polarity
7	LED enable	A bit for each LED	Bit 0-15: Enable Channel # for
	ASIC4		waveform capture.
8	Capture	Number of samples	Bit 0-9 : Number of samples
	Size	stored	
9	Pre-Trigger	Number of samples	Bit 0-9 : Number of samples stored
	Size	stored before the	before the trigger
		trigger	
10	Force	Forces all enabled	Bit 0: Force waveform capture on write
	capture	channels to collect a	'0' to '1'
		waveform	
11	Sample	Number of clocks	Bits 0-15: used in a counter counting
	Rate	between samples	down to 0. When 0 a sample is stored.
12	Stop	Stops the generation	Bit $0 \Rightarrow 1'$ to Stop
	Triggers	of Wave form	
		Triggers	

Polarity :- '0' => Positive ; '1' => Negative.

Threshold is the ADC value bear in mind 0 level is 8192 so +1 is 8193. The logic is :-

For Positive polarity (positive going edge) a trigger is generated if the Difference is greater than the threshold.

For Negative polarity (negative going edge) a trigger is generated if the Difference is less than the threshold.

Trace post capture maths controls

Offset	Name	Function	Comment
0	B_Samples	Number of samples	Bit 0-9: Only powers of 2 acceptable.
		for the baseline	So 2,4,8,16,32,64,128 etc.
		calculation	This is due to simple shifter division.
			Should be set less than the pre-trigger
			value.
1	Delay	Number of samples	Bits 0-3 : the number of samples to
	Length	to delay the input for	delay the input for the CFD.
		the CFD	
2	Threshold	Threshold for CFD	Bits $0 - 15$: Two's complement value
3	Fraction	CFD multiplier	Bits $0 - 7$: fraction value for the cfd.
			Bit 7 => 0.5
			Bit $6 \Rightarrow 0.25 etc.$
			So $0xC0 = 0.75$.

Base address 0x910

Two 14 bit data words are overwritten by the CFD results at the last two entries of the trace data.

First is the integer offset of the zero crossing from the trace data timestamp. Second is the vernier in bits 7:0 and a flag in bit 13 to indicate the CFD was successful.

Waveform capture Readout controls

0.00	3.7		
Offset	Name	Function	Comment
0	Control		Bit 0 <= '1' : Enable readout
			Bit 7 <= '1' : local reset of State
			machines and FIFOs
1	State		Bits 0-3 : transfer state machine
	machine		Bits 22 – 16 : Scanner value
	positions		
2	Status		Bit 0 <= '0'
			Bit 1 <= readout busy
			Bit 2 <= '0'
			Bit 3 <= time fifo full
			bit 4 <= Last Stage Fifo empty
			bit 5 <= Last Stage Fifo full
			bit $6 \leq 0$
			bit 7 \leq Last Stage Fifo prog full
			bit $8 \le 0$
			bit $9 \le 0$
			bit $10 \le 0$
			bit $11 <= 0$
			bit $12 \le \text{time fifo} \le 200$
			bit $13 \le \text{time fifo} > 500$
			bit $14 \leq \text{Pause signal}$
			bits $23 - 16:08$ Ready
			bit $31 \leq e_{x}$ actives (scanner)
3	Test counter		Bits $17 \rightarrow 0$: Number of writes to
5	i est counter		the last stage fife
1	Ico countor	The number of	Rits 0, 15: ico counter
4	ice counter	incorrect channel	Bits 0 - 15. Ice counter
		numbers	
5	Ex. actives	A shannal has data far	Dita 21 to 0 : Channels 21 to 0
3	Ev_actives	A channel has data loi	ASIC 1 and 2
(E	A share share data far	ASIC 1 and 2 Dite 21 to $0 \cdot Channels (2 to 22)$
0	Ev_actives	A channel has data for	Bits 31 to 0 : Channels 63 to 32
0	C		ASIC 3 and 4
8	Source	Allows a test counter to	Bit 0 : 0 selects normal data and
	select	be routed through the	1 selects a counter
		readout paths instead of	
	T C	normal data	
9	Into counter	Increments when an	Bits 15 to 0
	m : %	Into data item is output	
14	Time fifo		Bits 8 to 0 : how many events are
	data count		pending
15	Last stage	How many 128 bit	Bits 7 to 0
	data count	words are in this fifo	

Base address 0xA00 (Q8_transfer_simple.vhd)

The Enable is set to operate the waveform capture. All other registers are diagnostic.

ASIC1 controls

Base Address 0x4000

Offset	Title	Default	Register bits
0	preamp reset	5'b00100, 4	S[4:0]
1	shaper reset	5'b00101, 5	S[9:5]
2	filter reset	5'b00110, 6	S[14:10]
3	fast filter reset	5'b00010, 2	S[19:15]
4	peak hold reset	5'b00111, 7	S[24:20]
5	clamp reset	5'b01000,8	S[29:25]
6	comparator reset	5'b01001, 9	S[34:30]
7	hold timing	4'b0100, 4	S[38:35]
8	low_ref (pre-amp polarity)	1'b0 ,0	S[39]
9	shaping time 4u,2u,1u,0.5u	4'b0011, 3	S[43:40]
10	MEC (medium/low energy selection)	1'b0, 0	S[44]
11	clamp threshold 1V=0100, 2.4V=1101	4'b0100, 4	S[48:45]
12	slow comparator threshold (LEC/MEC)	8'b00001111,	S[56:49]
	0.102V	0x0F	
13	shaper reference 0.945V=001110100	8'b00110100,	S[64:57]
	2.376V=11010011	0x34	
14	fast comparator threshold HEC 0.102V	8'b00001111,	S[72:65]
		0x0F	
15	fast comparator threshold LEC/MEC	8'b00001111,	S[80:73]
	0.102V	0x0F	
16	vcasc_n for buffers 1.284V	8'b11010010,	S[88:81]
		0xD2	
17	vcasc_p for buffers 2.071V	8'b1000000,	S[96:89]
		0x80	
18	preAmp ref 0.198V=00010110	8'b10110010,	S[104:97]
	1.602V=10110010	0xB2	
19	biasRC preamp HEC 0.828V	8'b01011100,	S[112:105]
		0x5C	
20	vcasc_preamp_HEC 0.936V	8'b01101000,	S[120:113]
		0x68	
21	Ibias LF feedback 10uA	4'b1000,8	S[124:121]
22	biasRC preamp LEC 0.828V	8'b01011100,	S[132:125]
		0x5C	0540(400)
23	Ibias preamp SF 5mA	4'b1000, 8	S[136:133]
24	vcasc_preamp LEC 0.936V	8'b01101000,	S[144:137]
		0x68	
25	Ibias preamp 1.112mA	4'b1000, 8	S[148:145]
26	diode link threshold 0.18V=00010100	8'b11001010,	S[156:149]
	1.53V = 10101010	0xCA	
27	Unused	3'6000, 0	8[159:157]
28	Write to this address causes the ASIC to		
20	be loaded		
29	Status of the load. Bit 0 : loading busy		
	Bit I : value of the ASIC shift_out signal		

Bits 20 : 16 Fixed at '11111' for legacy	
software.	

The chip layout actually has 160 bits for the register, with the Serial_Out connected to the 160th bit, S[159]. Bits S[158:157] are unconnected. I recommend clocking the register fully (160 positive clock edges in sequence) so that all the bits are defined. If the load sequence is then repeated, the Serial_Out will have the same bit sequence as Serial_In. This is a good check that the clocking is working.

Note that the control register is loaded from Serial_In in reverse order. The first positive Serial_Clock edge loads Serial_In onto register bit S[0], and this bit then propagates through the register step by step. After the 160^{th} clock edge, the first Serial_In bit has become S[159], the second Serial_In is S[158] etc. It is best to allow >10ns between changing the Serial_In and applying the positive clock edge, just in case there are timing delays on chip. The negative clock edges have no effect, so their timing is not important.

For checking the operation of the shift registers, and the presence of an ASIC, the 160 bit register to be sent to the ASIC is copied as 5 x 32 bit words. The data shifted back into the FPGA is presented in the same format. Note: To check the ASIC operate the load twice to ensure the new contents of the control register in the ASIC are reloaded.

Offset	Register name	Comment
32	ASIC control register copy. Read only	[31:0]
33	ASIC control register copy. Read only	[63:32]
34	ASIC control register copy. Read only	[95:64]
35	ASIC control register copy. Read only	[127:96]
36	ASIC control register copy. Read only	[159:128]
40	ASIC control register returned. Read only	[31:0]
41	ASIC control register returned. Read only	[63:32]
42	ASIC control register returned. Read only	[95:64]
43	ASIC control register returned. Read only	[127:96]
44	ASIC control register returned. Read only	[159:128]

ASIC2 controls

Base Address 0x4040

ASIC3 controls

Base Address 0x4080

ASIC4 controls

Base Address 0x40C0

Map of the monitor points to channels on the Logic Analyser

The monitor connector on the underside of the FEE64 card is designed to have the plastic carrier for the "soft-touch" probe soldered in place. This then allows the probe to be connected.

There are 13 signals available for the logic analyser.

These signals are allocated in the top level of the VHDL and will vary according to the version in use.

Monitor signal	FPGA pin	ODD-Pod	Comments
number		bit number	
0	E31	D0	
1	F31	D2	
2	F30	D4	
3	AA30	D5	
4	G30	D6	
5	AC29	D7	
6	AD29	D8	
7	AD30	D9	
8	AE29	D10	
9	AF30	D11	
10	AF31	D12	
11	AJ31	D14	
12	AK31	D15	

Example waveforms for mux output of two channels (high energy and low energy)

The analogue mux settling time is roughly 100ns (ignoring the external amplifier). These waveforms are applicable for clock rates in the range $\sim 0.5M - 2MHz$ approx. 1MHz is the standard rate for simulation purposes – the clock runs continuously. All external waveform transitions occur on positive clock edges.