05/07/2000

Exogam Project

 

 

 

GIR V5 MAP

 

for

 

E.S.S. Card

 

 

 

 

 

 

 

 

 

 

 

 

Ver 1.1

By: I. Merlin, N. Karkour (C.S.N.S.M. Orsay)

 

 

 

In collaboration with:

I. Lazarus (NPSG UK)


1.    Description of the G.I.R.V5 for the E.S.S. card.......................................................................... 2

1.1.    Exogam Detector:................................................................................................................... 2

1.2.    DSP online data processing:................................................................................................... 2

1.2.1.    Multiprocessing Control:..................................................................................................... 2

1.2.2.    Power Supplies Control and automatic Pole Zero Adjustment............................................. 2

1.2.3.    On-Line Histogrammer and Datas Processing..................................................................... 3

1.3.    Readout Mechanism:............................................................................................................... 3

1.4.    Electrical and Mechanical precautions:................................................................................. 4

1.5.    ESS  AP Description............................................................................................................... 5

1.5.1.    General description............................................................................................................ 5

1.5.2.    Detailled description........................................................................................................... 6

1.5.3.    Pinouts of the AP Connector  for the ESS Card................................................................. 9

2.    Memory Map of the GIRV5 for the ESS Card........................................................................ 10

2.1.    VXI Configuration Registers................................................................................................. 10

2.2.    Common Register Area......................................................................................................... 10

2.2.1.    GIR Module Control Register  : GMCR........................................................................... 11

2.2.2.    ESS Module Control Register : EMCR............................................................................. 11

2.2.3.    Inspection lines................................................................................................................. 11

2.2.4.    Temperature Control Register........................................................................................... 15

2.2.5.    DAC Buffer settings......................................................................................................... 16

2.2.6.    GIR Readout Control and Status register area................................................................... 16

2.2.7.    GIRV5 Readout Control Register  : RCR......................................................................... 17

2.2.8.    GIRV5 Readout Status Register....................................................................................... 17

2.2.9.    Readout Setup Area......................................................................................................... 17

2.3.    Channel Area Addresses....................................................................................................... 19

2.3.1.    DAC Setting Registers:..................................................................................................... 20

2.3.2.    CCR Definition................................................................................................................ 20

2.3.3.    Time Alignment Registers................................................................................................. 21

2.3.4.    TDC Control Registers..................................................................................................... 21

3.    General figures........................................................................................................................... 23

3.1.    GIRV5 Card Dimensions....................................................................................................... 23

3.2.    PCB_AP board connections:................................................................................................ 24

3.3.    GIRV5 Shift registers connection figure............................................................................... 24

3.4.    GIRV5 Dac and potentiometer connection figure................................................................ 24

 


1.           Description of the G.I.R.V5 for the E.S.S. card.

 

1.1.            Exogam Detector:

 

One of the solutions for electronics of the data acquisition systems in Nuclear physics experiments is to use VXI (VME eXtension bus for Instrumentation) standard electronics.

 

In EXOGAM we have new detectors called the Segmented Clover detector. Each detector contains 4 central contact Ge crystals, and 16 outer contact crystals with its escape suppression shields (made of BGO)at the sides, and Caesium Iodide (CSI) as back-catchers. We have 4 Clover shields in one VXI card : ESS Card (EXOGAM Suppression Shield). Each shield delivers 4 outputs from the BGO and 4 outputs from the CSI. GIRV5 assumes the analogue part configuration, the Readout interface logic (internal, and external), the VXI power supply filtering, the Inspection lines control logic, the DSP control for online data processing. Connections between GIRV5 and ESS card is done by 3 AP connectors with 150 pins each.

 

GIRV5 was accepted because it responds to the request, and the constraints asked for the ESS card. The GIRV5 is a Readout Interface card, which is connected between the VXI back plane and the ESS Analogue card, so that the 2 cards (GIRV5-Analog) form a complete VXI D-size Board. This Board have programmable Input/ Output signals that are connected to the Analogue cards to setup and configure the registers, and thresholds as well as data acquisition parameters for EXOGAM.

The GIRV5 's job is to read out the corrected ADC data and writes them (or not) into the FIFO's, then these data are transferred to the VRE (VXI Readout Engine) Board on the VXI back plane. The Readout mechanism is completely programmable, and suitable for any acquisition system. In the case of EXOGAM, Eurogam Readout interface for common deadtime is used.

 

 

1.2.            DSP online data processing:

 

1.2.1.      Multiprocessing Control:

 

This new feature is added to interconnect any assembly of VXI cards DSP's together through the VXI Local bus. This feature is completely programmable. That is by software control we can specify graphically which VXI cards can be grouped together through the Local bus, so that the DSP can have data exchange for Readout decision, and in this way we can decide in a more accurate way if the data in the FIFOs are good data or not. In another context, this decision acts as a trigger level which could be called Readout trigger, that is after the data are sent to the FIFO's the DSP can make some analysis on these data, and can interrupt the external Readout cycle if those analysis don't correspond to what the user needs.

 

1.2.2.      Power Supplies Control and automatic Pole Zero Adjustment.

 

Other feature for the DSP is Local control on the VXI card for Analogue signal through a 16 input Analogue multiplexer; there are 2 free Analogue flags on the AP connector, the Analogue Inspection Lines as well as the Voltage inspection line are connected to this multiplexer, and the VXI power supplies are connected too. We can, for example, control the power supplies and send flags when their level go up the references.

We can also control the Automatic Pole Zero Adjustment specific for Ge detectors or other detectors which need Pole Zero Adjustment or other Automatic Dac Adjustment (by DSP Programming). This multiplexer is connected to a local high Speed 66MHz Flash ADC, then the values are written in the DSP RAM, after which the DSP Processes the data, and send the correction to the Software on-line control through flag registers.

 

1.2.3.      On-Line Histogrammer and Datas Processing.

 

DSP process ADC data and builts spectra in its external memory (Spy mode). DSP can also process datas (gain adjustment) before sending them to FIFO (Filter mode). The external memory can store 64 spectra of 14 bits.

 

Spy mode: In this mode the DSP just collects the data at the same time, as they go onto the VXI backplane, during an event and make processing on these data, and puts the result in its Memory. This can help the user to check on the results inside each card during an experiment to make sure that the card setup is done good. The DSP DOES NOT make any modification on the good data .

Filter mode: The GIRV5 can be programmed by software to make the DSP read the data without sending it to the VXI backplane, and then the DSP, automatically, makes data processing, and sends back the results to GIRV5 readout interface which sends it back to the VXI backplane. In this mode the DSP can make any kind of filtering on the data, and even keeps the raw results, and add more processed data inside the same event. This method can help the user to get more information from each event in addition to the raw data.

 

 

1.3.            Readout Mechanism:

 

The Readout Mechanism will be divided into two cycles: Internal, and External Readout cycles. The Internal cycle is the cycle which takes place for data transfer between the Analogue card, and the GIRV5. While the External Readout cycle is the interface between the G.I.R, and the VRE Board.

 

In the External Readout cycle the Eurogam Readout interface will be used. We will upgrade later the Readout interface to several Readout mechanisms due to programmable devices (e.g. SSBLT or MBLT 64 transfer etc.).

In EXOGAM  the GIRV5 uses as in Eurogam the same VXI lines dedicated for the Digital, and Analogue multiplexing lines, Fast trigger, and Validation signals, etc...

 

First, When the CFD of a Ge channel fires and when the Sumbus signal exceeds the sumbus threshold in the MASTER trigger, this latter sends a Fast Trigger signal followed by a Validation signal (with the event no. on the VXI local bus) as a confirmation that the present event (which is already running) is a good event to be coded, and the data in the ADCs are to be read out or transferred into the FIFO[1].

 

When it receives Validation the VRE asserts the AS* (Address Strobe) signal onto the VXI back plane with the event no. on the VME address bus, and waits for the VXI boards that participate in this event by asserting or not BLTACK* (BLTACK* is an open collector signal). At that time the Readout interface inside each GIRV5 maintains BLTACK* if Validation Acknowledge signal from the Local Trigger(s) is asserted, and it waits until the ADC data are sent out to the FIFO. The VRE reads all the data from all the VXI cards by daisy chain[2]. For more details about how the GIRV5 builds its interface refer to the Readout document, concerning both the Internal, and the External Readout mechanism.

 

1.4.            Electrical and Mechanical precautions:

 

This card is specifically designed for low noise Analogue data acquisition systems. It takes care of the EMC problems. It already contains several elements which worked before in other similar cards. Data transfer is 20 Mbytes/sec 5 Mwords/sec, and in Nuclear physics data acquisition systems the shaping time and the coding time take highest percentage of the total channel dead time.

The aim of this Board is to have Readout interface completely programmable for different Readout mechanisms, and which can be suitable for different data acquisitions. That is it can be adapted to either fast or slow data transfers. The Analogue engineer need not be anxious about the Readout part of his Board. He needs only to design his Board up to digital data, and then he has to choose the Readout system to be adapted for his experiment, so that the Readout interface can be built.

 

 

 

EMC problems are very dangerous to sensitive Analogue signals, especially in Nuclear physics data acquisitions. GIRV5 has the middle column of the 150 pin AP connectors (as shown previously) mostly grounded. Extra flat connectors will be used to minimise the electromagnetic noise penetrations. Slow asynchronous data transfer from the FIFO's. (see the PCB_AP connections diagram.). For example the 2 Analogue Inspection Lines are surrounded with ground pins. Power Supply chokes, and OSCON capacitors are used to filter the VXI power supplies.

 

The interconnection between the Analogue card and GIRV5 can be shown in the figures below showing the top, bottom, and face views. An extractor tool is built to extract the PCB_AP connector (450 pins) out of both the GIRV5, and the Analogue card. A special tool exists to mount, and unmount the GIRV5, and the Analogue card together with the PCB_AP without having any pressure on the SMD components, just on the surrounding of both PCB's (see the mechanical dimensions, & the isometric view figures for more details).

 

 

A new mechanic has been adopted to protect cards from high temperature and EM perturbations. The card is now fixed on 2 rails (upper and lower) and the whole is inserted in the crate slot. This has induced the decrease of the PCB dimensions, but the manipulation of the card during prototype tests is easier and safer. The rails are pierced with 450 holes each, increasing the airflow area about 50%. 2 shields are fixed by 36 screws in the rails, avoiding the alignment problem causing by the passage through the PCB in the old mechanic. EMC performances are above 90dB

 


1.5.            ESS  AP Description

 

The GIRV5 is connected to the Analogue card through three connectors (3 x 50= 150 pins). These connectors are called Analog_P (AP) connectors. The connections between the GIRV5, and the Analogue card is made through a PCB (called the PCB_AP). The middle column of this connector is mostly connected to the ground for EMC precautions (for more details refer to the Electrical Precautions). These connectors are called AP1, AP2, & AP3 ( from top to bottom). All three connectors are fully compatible so that the same PCB_AP is used. For example the same power supply pins are connected through a routing shape. Table 1 describes the three AP connector pins, and their locations.

 

1.5.1.      General description.

 

AP1:

a.       76 Input/ Output pins (called Reg_Io) which are fully programmable pins of a XILINX FPGA

b.      10 bits of a latched address bus (ADD 1 to ADD 10).

c. Filtered -2 volts VXI power supply. 

d. 1 Analogue Flag free signal which is connected to an analogue multiplexer inside the GIRV5, and which can be digitised by the DSP program, plus two digital free I/O signals(RDFLAG1,2).

 

AP2:     

a. The higher 16 bit of  a latched address bus (ADD 11 to ADD 23).

b. There is also the Analog, Digital, and Voltage Inspection Lines which come from the Analogue card.

c. the lower 16 bits of the bidirectional data bus.

d. 16 input/output reprogrammable pins (called Reg_Io) from XILINX FPGA (LCA Decode2).

e. 18 input/output pins from the ReadOut LCA  (READ 0 to READ 17 except READ 6,8,10,11,14 which are buffered output signals to the Analogue card.

f. 4 TTL signals which come from the VXI back plane as ECL signals (they are the Trigger Event numbers in EXOGAM ),

g. 1 Analogue Flag free signal which is connected to an analogue multiplexer inside the GIRV5, and which can be digitised by the DSP program, and two digital free I/O signals (RDFLAG3 ,4).

 

AP3:

a. The higher 16 bits of the data bus (DATA 16 to DATA 31).

b. 5 input/output signals from the ReadOut LCA (READ 18 to READ 22).

c. The Differential VXI line Starx +/- , and 2 TTL Trigger lines (which is the Fast Trigger, Validation, and Inhibit signals respectively). They are the EXOGAM MASTER Trigger signals.

d. Moreover there are 49 INPUT/output pins from LCA Decode2 (called Reg_IO).

e. 4 bits which are connected to the highest nibble in the FIFO, they are the event no. latched in the Analogue Board.

f. 3 TTL signals which can be used as flags for the DSP

g. the VME 16 MHz Clock, and filtered  +/- 12 volts VXI power supply.

 

1.5.2.      Detailled description.

 

1.5.2.1.AP1 :

 

- Ddin : serial data signal to load the DACs, this signal is common for all the Dacs.

- DClk : clock signal to load the DACs, this signal is common for all the Dacs.

- DCSA n : Chips Select for threshold DACs on channel n (n=0,1,2,3).

- DCSB n : Chips Select for Local Trigger DACs on channel n (n=0,1,2,3).

- CCR n[3:0]: 4 bits Channel Control Register for channel n (n=0,1,2,3).

- Bgo q-wr : BGO q_Align_Delay_WrEn signal for quadrant q (q=A, B, C, D).

- Csi q-wr : Csi q_Align_Delay_WrEn signal for quadrant q (q=A, B, C, D).

- Ge q-wr : Ge q_Align_Delay_WrEn signal for quadrant q (q=A, B, C, D)

- TDC q, 5 : TDC_Stop_Select signal for quadrant q plus one common (q=A, B, C, D)

- VetoDelay : Veto_Delay_WrEn signal.

- VetoWidth : Veto_Width_WrEn signal

- Pattern : Pattern_Delay_WrEn signal.

- MyChSel n : Select the channel (detector) for Alignment, TDC, Veto and Pattern (n=0,1,2,3).

- RgiSel : Indicates a VME cycle with valid AM code for address in range 0x400 to 0xFFE (Readout Setup Registers).

- RegStrobe : Latch VME data into RGI registers.

- LI 1,2_En n : Enable the digital inspection lines 1 and 2 on channel n (n=0,1,2,3,4).

- Digstrobe 1,2 : Latch data to select parameter on digital inspection lines 1 and 2.

- AI 1,2_En n : Enable the digital inspection lines 1 and 2 on channel n (n=0,1,2,3).

- AIstrobe 1,2 : Latch data to select parameter on analogue inspection lines 1 and 2.

- ADD[10:1] : this is the lowest byte of the VME Address bus, it is enabled by the GIRV5

- Temp Led : ON if Over or under  normal temperature.

- Error Led : ON if Fifo Error.

- Done Led : ON if all LCAs are programmed.

- VPTAT 1 :  Temperature Monitoting Sensor 1.

- +5 V    : 6 pins.

- -5.2 V : 6 pins.

- -2 V     : 8 pins.

 

 


1.5.2.2.AP2 :

 

- Clk 33MHz :

- Last Pass : Renout of the analogue card indicates end of readout cycle.

- StartRdt : This signal is the Start_Readout of the analogue card, which is the back edge of the last Busy signal.

- Valack : this signal is the Validation Acknowledge given by the last (Daisy chain) Local Trigger.

- Dtready : Signal given by analogue card when  a data is ready to be latched on the bus.

- Renin : Start readout cycle of events, this signal is sent by GIR to the analogue card.

- AI 1,2 : Analogue Inspection Lines 1 and 2.

- DI 1,2 : Digital Inspection Lines 1 and 2.

- ADD[23:11] : VME Address bus, it is enabled by the GIR

- DATA[15..0] : these bits are the 16 LSB GIR Data bus. This bus has 2 functions : it is the VME data bus during read-write operation of the analogue card and GIR DSP data bus during Readout.

- EvtIn [3:0] : 4 bits Event Number from Lbus.

- EvtAna [3:0] : 4 bits Event Number to GIR Readout

- L[0:7]  : Local Data bus used for setup LI and AI lines, alignments delays, veto, pattern adjustments, TDC control

- EMCR [3:0] : 4 bits ESS Module Control Register.

- LTResetGir : This signal indicates the end of the event processing. It goes to the analogue card  which sends it to the Local Triggers that were read out.

- Dtack : buffered data acknowledge signal for each word of the the analogue card in readout cycle.

- Global Reset : buffered global reset signal.

- Clk16MHz :

- OVER 1,2 * : Indicates over temperature for sensors 1 and 2

- UNDER 1,2 * : Indicates under temperature for sensors 1 and 2

- +5 V    : 6 pins.

- -5.2 V : 6 pins.

- +12 V : 4 pins.

- - 12 V : 4 pins.

 


1.5.2.3.AP3 :

 

- DATA[31..16] : these bits are the 16 MSB GIR Data bus. This bus has 2 functions : it is the VME data bus during read-write operation of the analogue card and GIR DSP data bus during Readout.

- R/W : buffered VME read-write signal.

- Inhibit* : buffered Inhibit signal from the MASTER Trigger (on the VXI back plane). It is used by Local Triggers only when singles are disabled.

- Fast Trigger : buffered Fast Trigger signal ( positive TTL ) from the MASTER Trigger (starX +/- on the VXI back plane).

- Val* : buffered Validation signal from the MASTER Trigger (on the VXI back plane).

- Beam RF : Beam signal

- PromCS : serial PROM Chip Select signal of the ESS Analogue card.

- PromRd:  serial PROM Data to be read out of the ESS Analogue card.

- PromWr:  serial PROM Data to be writen of the ESS Analogue card.

- Promhd:  Hold signal for serial PROM of the ESS Analogue card.

- DSPFLAG 1to 3 : TTL signals which can be used as flags for the DSP

- VPTAT 1 :  Temperature Monitoting Sensor 1.

- +5 V    : 6 pins.

- -5.2 V : 6 pins.

- +24 V : 4 pins.

- -24 V   : 4 pins.

 


 

1.5.3.      Pinouts of the AP Connector  for the ESS Card

 

 

AP1 Connector

AP2 Connector

AP3 Connector

 

 

ROW A

ROW B

ROW C

ROW A

ROW B

ROW C

ROW A

ROW B

ROW C

 

1

+5 V

+5v

+5v

+5 V

+5 V

+5 V

+5v

+5v

+5v

1

2

DDIN

GND

DCLK

Clk33Mhz

GND

ADD 11

DATA 16

GND

I/O2

2

3

DCSA0

Temp LED

DCSA1

LastPass

Over1*

ADD12

DATA 17

DI1TTL

I/O2

3

4

DCSA2

GND

DCSA3

StartRdt

GND

ADD13

DATA 18

GND

I/O2

4

5

DCSB0

error LED

DCSB1

Valack

Under1*

ADD14

DATA 19

DI2TTL

I/O2

5

6

DCSB2

GND

DCSB3

Rd/IO

GND

ADD15

DATA 20

GND

I/O2

6

7

CCR00

DONE LED

CCR01

DtReady

Over2*

ADD16

DATA 21

DSPFLAG3

I/O2

7

8

CCR02

GND

CCR03

Renin

GND

ADD17

DATA 22

GND

I/O2

8

9

CCR10

VPTAT1

CCR11

GND

Under2*

ADD18

DATA 23

VPTAT2

I/O2

9

10

CCR12

GND

CCR13

AI 1

GND

ADD 19

DATA 24

GND

I/O2

10

11

CCR20

GND

CCR21

GND

GND

ADD 20

DATA 25

GND

I/O2

11

12

CCR22

GND

CCR23

AI 2

GND

ADD 21

DATA 26

GND

I/O2

12

13

CCR30

GND

CCR31

GND

GND

ADD22

DATA 27

GND

GND

13

14

CCR32

GND

CCR33

DI 1

GND

ADD23

DATA 28

GND

FTECL+

14

15

-5.2 V

-5.2 V

-5.2 V

-5.2 V

-5.2 V

-5.2 V

-5.2 V

-5.2 V

-5.2 V

15

16

BgoQA-wr

GND

BgoQB-wr

DI 2

GND

GND

DATA 29

GND

FTECL-

16

17

BgoQC-wr SeleQct2

GND

BgoQD-wr

GND

GND

GND

DATA 30

GND

I/O2

17

18

CsiQA-wr

GND

CsiQB-wr

VI

GND

GND

DATA 31

GND

I/O2

18

19

CsiQC-wr

GND

CsiQD-wr

DATA 0

GND

NC

I/O2

GND

I/O1

19

20

GeQA-wr

GND

GeQB-wr

DATA 1

GND

GND

I/O2

GND

I/O1

20

21

GeQC-wr

GND

GeQD-wr

DATA 2

GND

EvtIn0

R/W

GND

NC

21

22

TdcQA

GND

TdcQB

DATA 3

GND

EvtIn1

I/O1

GND

I/O2

22

23

TdcQC

GND

TdcQC

DATA 4

GND

EvtIn2

I/O1

GND

I/O2

23

24

Tdc5

GND

VetoDelay

DATA 5

GND

EvtIn3

I/O1

GND

I/O2

24

25

-5.2 V

-5.2 V

-5.2 V

-5.2 V

-5.2 V

-5.2 V

-5.2 V

-5.2 V

-5.2 V

25

26

VetoWidth

GND

Pattern

DATA 6

GND

EvtAna0

Inhibit*

GND

I/O2

26

27

ChSel0

GND

ChSel1

DATA 7

GND

EvtAna1

FT

GND

I/O2

27

28

ChSel2

GND

ChSel3

I/O1

GND

EvtAna2

Val*

GND

I/O2

28

29

RgiSel

GND

RegStrobe

DATA 8

GND

EvtAna3

BeamRF

GND

I/O2

29

30

LI1_En0

GND

LI2_En0

DATA 9

GND

GND

LinkD0

GND

I/O2

30

31

LI1_En1

GND

LI2_En1

DATA 10

GND

GND

LinkD1

GND

I/O2

31

32

LI1_En2

GND

LI2_En2

DATA 11

GND

GND

LinkD2

GND

I/O2

32

33

LI1_En3

GND

LI2_En3

DATA 12

GND

GND

LinkD3

GND

I/O2

33

34

LI1_En4

GND

LI2_En4

DATA 13

GND

LD 0

LinkClk

GND

I/O2

34

35

Digstrobe1

GND

Digstrobe2

DATA 14

GND

LD 1

LinkAck

GND

I/O2

35

36

ADD 1

GND

AI1_En0

DATA 15

GND

LD 2

PromCS

GND

I/O2

36

37

ADD2

GND

AI1_En1

I/O1

GND

LD 3

PromRd

GND

I/O2

37

38

ADD3

GND

AI1_En2

I/O1

GND

LD 4

PromWr

GND

I/O2

38

39

ADD4

GND

AI1_En3

LTResetGir

GND

LD 5

PromClk

GND

I/O2

39

40

ADD5

GND

AI2_En0

Dtack

GND

LD 6

Promhd

GND

I/O2

40

41

ADD6

GND

AI2_En1

EMCR0

GND

LD 7

I/O2

GND

I/O2

41

42

ADD7

GND

AI2_En2

EMCR1

GND

I/O2

I/O2

GND

I/O2

42

43

ADD 8

GND

AI2_En3

EMCR2

GND

NC

I/O2

GND

I/O2

43

44

ADD 9

GND

AIStrobe1

EMCR3

GND

NC

Clk16M

GND

Clk100M+

44

45

ADD 10

GND

AIStrobe2

GlobReset

GND

NC

I/O2

GND

Clk100M-

45

46

+5 V

+5 V

+5 V

+5 V

+5 V

+5 V

+5 V

+5 V

+5 V

46

47

-2 V

GND

-2 V

+12 V

GND

+12 V

+24 V

GND

+24 V

47

48

-2 V

-2 V

-2 V

+12 V

+12 V

+12 V

+24 V

+24 V

+24 V

48

49

-2 V

GND

-2 V

-12 V

GND

-12 V

-24 V

GND

-24 V

49

50

-2 V

-2 V

-2 V

-12 V

-12 V

-12 V

-24 V

-24 V

-24 V

50

LCA 1    LCA 2    Not Used by ESS card        Buffered Outputs                               Fixed signals


2.            Memory Map of the GIRV5 for the ESS Card

 

 

VME Address

Function

0xFFFFFF80 to 0xFFFFFF8A

VXI Configuration Registers. (See § 2.1)

0x0 to 0xFFE

Common Area Address (See § 2.2 )

0x1000 to 0x13FE

Channel Area Address (See § 2.3)

 

2.1.            VXI Configuration Registers.

            The VXI base address is calculated as follow : 0xFFFFFF80 - (n * 0x40)  where n is the number of cards between the Resource Manager and the Target card (n = 0 to 11).

 

VXI Base Address (slot 1)

Description

DATA Format

0xFFFFFF80

In Read Mode this is the Man. ID. Device Class and Address Space

d15, d14 = 0x3, d13, d12=01(A16/A32) or  00 (A16/A24), d11, d8 =1111for IN2P3

d7,d0=Pr (0x5A) for IN2P3 from PROM

0xFFFFFF80

In Write mode the R.M. Writes the Logic Address of the VXI card in A13,A6

D7 to D0 is the logical Address

0xFFFFFF82

Read Only Register for the Device type and the model code

d15,d12 = 0x 7 (A24) or 0xf (A32)

d11,d8=model code d7 to d0 from PROM

0xFFFFFF84

In Read mode: Status Register

d15 to d0

0xFFFFFF84

Write mode: Control Register

d15 to d0

0xFFFFFF86

Read/Write Offset Register

d15,d8 for A24, d15,d0 for A32

0xFFFFFF88

Read Only: Serial no.

Read 8 bits only from PROM d7 to d0

0xFFFFFF8A

Read Only: Modification Level

Read 8 bits only from PROM d7 to d0

 

 

2.2.            Common Register Area

 

VME Address

Bus Width

Rd/ Wr

Function

0x0 to 0xE

16

w

Not yet allocated

0x10

16

w

GIR Module Control Register (GMCR) (See § 2.2.1 )

0x12

16

w

ESS Module Control Register (EMCR) (See § 2.2.2 )

0x14

16

w

DSP DAC Adjustment

0x16

16

w

DSP Pot Adjustment

0x14 to 0x1E

16

w

Not yet allocated

0x20--0x2E

16

w

Inspection lines (See § 2.2.3.2 )

0x30 to 0x3E

16

w

Not yet allocated

0x40--0x5E

16

r/w

Temperature control Register (See § 2.2.4 )

0x60 to 0xFE

16

w

Not yet allocated

0x100—0x1FE

16

r/w

 XCPROM DAC Buffer settings (See § 2.2.5 )

0x300—0x3FE

16

r/w

GIR Readout Setup (See § 2.2.6 )

0x400—0xFFE

16

r/w

Readout Setup Area (See §2.2.9 )

 

 

 


2.2.1.      GIR Module Control Register  : GMCR

VME base Address :  0x10

 

Bit Number

Meaning when = 0

Meaning when = 1

0

Not Last Card

Last Card (use terminators)

1

Reset FIFO Disable

FIFO Reset

2

Reset DSP Disable

DSP Reset

3

Reset GIR Disable

GIR Reset

4

Write Protect Prom on

Write Protect Prom off

5 to 15

Not Allocated

Not Allocated

 

 

 

2.2.2.      ESS Module Control Register : EMCR

VME base Address :  0x12

 

Bit Number

Meaning when = 0

Meaning when = 1

0

Not yet Defined

 

1

Not yet Defined

 

2

Not yet Defined

 

3

Not yet Defined

 

4 to 15

Not Allocated

Not Allocated

 

 

 

2.2.3.      Inspection lines.

VME base Address :  0x20 to 0x2E

 

VME Address

Bus Width

Rd/ Wr

Function

0x20

16

R/w

Digital Inspection 1 channel select (See § 2.2.3.1 )

0x22

16

R/w

Digital Inspection 1 parameter Select

0x24

16

R/w

Digital Inspection 2 channel select

0x26

16

R/w

Digital Inspection 2 parameter Select

0x28

16

R/w

Analogue Inspection 1 channel select (See §2.2.3.2 )

0x2A

16

R/w

Analogue Inspection 1 parameter Select

0x2C

16

R/w

Analogue Inspection 2 channel select

0x2E

16

R/w

Analogue Inspection 2 parameter Select


2.2.3.1.Digital inspection lines:

vme base address :         line1 channel= 0x20, parameter = 0x22; line2 channel= 0x24, parameter = 0x26

 

Parameters

Data Value for line Address

Data Value for Parameter Address

Disable

0x0

xx

BGO Discriminator QA

0x1 Channel 0

0x0

BGO Discriminator QB

0x1

0x1

BGO Discriminator QC

0x1

0x2

BGO Discriminator QD

0x1

0x3

CSI Discriminator QA

0x1

0x4

CSI Discriminator QB

0x1

0x5

CSI Discriminator QC

0x1

0x6

CSI Discriminator QD

0x1

0x7

PDS Gate BGO

0x1

0x8

PDS Hold/Reset BGO

0x1

0x9

PDS Gate CSI

0x1

0xA

PDS Hold/Reset CSI

0x1

0xB

Veto QA

0x1

0xC

Veto QB

0x1

0xD

Veto QC

0x1

0xE

Veto QD

0x1

0xF

LT Start

0x1

0x10

LT FT Sample

0x1

0x11

LT Val Sample

0x1

0x12

LT Reset Out

0x1

0x13

LT Valack

0x1

0x14

LT Watchdog

0x1

0x15

ADC Busy

0x1

0x16

ADC Clock

0x1

0x17

ADC Fail

0x1

0x18

ADC Output Enable

0x1

0x19

Read TAC QA

0x1

0x1A

Read TAC QB

0x1

0x1B

Read TAC QC

0x1

0x1C

Read TAC QD

0x1

0x1D

Read TAC 5

0x1

0x1E

Read Pattern

0x1

0x1F

Ge CFD-in QA

0x1

0x20

Ge CFD-in QB

0x1

0x21

Ge CFD-in QC

0x1

0x22

Ge CFD-in QD

0x1

0x23

Ge CFD-out Aligned QA

0x1

0x24

Ge CFD-out Aligned QB

0x1

0x25

Ge CFD-out Aligned QC

0x1

0x26

Ge CFD-out Aligned QD

0x1

0x27

BGO-out Aligned QA

0x1

0x28

BGO-out Aligned QB

0x1

0x29

BGO-out Aligned QC

0x1

0x2A

BGO-out Aligned QD

0x1

0x2B

CSI-out Aligned QA

0x1

0x2C

CSI –out Aligned QB

0x1

0x2D

CSI –out Aligned QC

0x1

0x2E

CSI –out Aligned QD

0x1

0x2F

TAC Start QA

0x1

0x30

TAC Start QB

0x1

0x31

TAC Start QC

0x1

0x32

TAC Start QD

0x1

0x33

TAC Start 5

0x1

0x34

TAC Stop QA

0x1

0x35

TAC Stop QB

0x1

0x36

TAC Stop QC

0x1

0x37

TAC Stop QD

0x1

0x38

TAC Stop 5

0x1

0x39

Any BGO

0x1

0x3A

Any CSI

0x1

0x3B

Any Ge

0x1

0x3C

Start Pattern

0x1

0x3D

Pattern Gate

0x1

0x3E

TDC Reset In

0x1

0x3F

Disable

0x1

0x40 to 0x7E

 

 

Parameters

Data Value for line Address

Data Value for Parameter Address

Same parameters (see upper)

0x2 for Channel 1

Same Values (see upper)

Same parameters (see upper)

0x3 for Channel 2

Same Values (see upper)

Same parameters (see upper)

0x4 for Channel 3

Same Values (see upper)

Common Signals

Fast Trigger

0x5

0x0

Validation

0x5

0x1

Inhibit Action

0x5

0x2

LT Reset In

0x5

0x3

Rdo-DataReady

0x5

0x4

Rdo-DataAck

0x5

0x5

Rdo Ren-in

0x5

0x6

Rdo-Last Pass

0x5

0x7

ADC Sliding Scale = 0

0x5

0x8

ADC Sliding Scale = full scale

0x5

0x9

Not yet allocated

0x5

0xA

Not yet allocated

0x5

0xB

Not yet allocated

0x5

0xC

Not yet allocated

0x5

0xD

Not yet allocated

0x5

0xE

Not yet allocated

0x5

0xF

Readout LCA signal (tbd)

0x5

0x10

Readout LCA signal (tbd)

0x5

0x11

Readout LCA signal (tbd)

0x5

0x12

Readout LCA signal (tbd)

0x5

0x13

Readout LCA signal (tbd)

0x5

0x14

Readout LCA signal (tbd)

0x5

0x15

Readout LCA signal (tbd)

0x5

0x16

Readout LCA signal (tbd)

0x5

0x17

Readout LCA signal (tbd)

0x5

0x18

Readout LCA signal (tbd)

0x5

0x19

Readout LCA signal (tbd)

0x5

0x1A

Readout LCA signal (tbd)

0x5

0x1B

Readout LCA signal (tbd)

0x5

0x1C

Readout LCA signal (tbd)

0x5

0x1D

Readout LCA signal (tbd)

0x5

0x1E

Readout LCA signal (tbd)

0x5

0x1F

Disable

0x6 to 0x1F

xx

 


 

Parameters

Data Value for line Address

Data Value for Parameter Address

 

GIR Control Lines

 

Disable

0x20

0x0

0x20

0x000

 

TRIGGER SIGNALS.

 

Fast_Trigger

0x20

0x01

 

Inhibit_Action (M.T.)

0x20

0x02

 

Validation

0x20

0x03

 

Event Reject

0x20

0x04

 

Beam Pulse

0x20

0x05

 

READOUT ESS to GIRV5

 

OrValack

0x20

0x06

 

Conversion Dtime (coding)

0x20

0x07

 

StartReadout

0x20

0x08

 

Rdo-Renin

0x20

0x09

 

Rdo-Dtready

0x20

0x0A

 

 

0x20

0x0B

 

 

0x20

0x0C

 

 

0x20

0x0D

 

Rdo-Dtack

0x20

0x0E

 

Rdo-Last Pass

0x20

0x0F

 

CLKWF

0x20

0x10

 

ENWF

0x20

0x11

 

VXI READOUT

 

0x20

0x015

AS* (VME)

0x20

0x16

 

DS (DS0* and DS1*) (VME)

0x20

0x17

 

R/W* (VME)

0x20

0x18

 

ModRoco

0x20

0x19

 

CardRenin *(From VRE)

0x20

0x1A

 

BLTACK (Card)

0x20

0x1B

 

BLTACK (Bus)

0x20

0x1C

 

FDTACK

0x20

0x1D

 

DTACK* (VME)

0x20

0x1E

 

Oe_GIRV5 Counter

0x20

0x1F

 

CardRenout (Bus Renout)

0x20

0x20

 

LT_Reset*

0x20

0x21

 

ClkB_Fifo

0x20

0x22

 

ENR-F1

0x20

0x23

 

Or-Fifo

0x20

0x24

 

Reset-Fifo

0x20

0x25

 

Sysclk

0x20

0x26

 

DSP INTERFACE

 

en_DMA

0x20

0x27

 

DMA-Req

0x20

0x28

 

DMA-Grant

0x20

0x29

 

Link_Start

0x20

0x2A

 

Link5_Ack

0x20

0x2B

 

Link5_Clk

0x20

0x2C

 

Link5_Dat0

0x20

0x2D

 

Link5_Dat1

0x20

0x2E

 

Link5_Dat2

0x20

0x2F

 

Link5_Dat3

0x20

0x30

 

OE_Link5_out

0x20

0x31

 

OE_DSP_Run

0x20

0x32

 

Readout-Evt-Fault-M1

0x20

0x33

 

Readout-Evt-Fault

0x20

0x34

 

Readout-Evt-Match

0x20

0x35

 

Disable

0x21 to 0x7E

xxxx

 

 


2.2.3.2.Analogue inspection lines:

 

vme base address        for line1 :  channel= 0x28, parameter = 0x2A

for line2 :  channel= 0x2C, parameter = 0x2E

 

Parameters

Data Value for line Address

Data Value for Param Address

Disable

0x0

xx

BGO Input QA

 0x1 for Channel0

0x0

BGO Input QB

 0x1

0x1

BGO Input QC

 0x1

0x2

BGO Input QD

 0x1

0x3

CSI Input QA

 0x1

0x4

CSI Input QB

 0x1

0x5

CSI Input QC

 0x1

0x6

CSI Input QD

 0x1

0x7

BGO Peak

 0x1

0x8

CSI Peak

 0x1

0x9

Sum of BGO+CSI Peak

 0x1

0xA

BGO PZ test point

 0x1

0xB

CSI PZ test point

 0x1

0xC

Not yet allocated

 0x1

0xD

Not yet allocated

 0x1

0xE

Not yet allocated

 0x1

0xF

Same parameters (see upper)

0x2 for Channel 1

Same Values (see upper)

Same parameters (see upper)

0x3 for Channel 2

Same Values (see upper)

Same parameters (see upper)

0x4 for Channel 3

Same Values (see upper)

Disable

0x5 to 0xF

xx

 

 

2.2.4.      Temperature Control Register

VME base Address :  0x40 to 0x54

 

Address

Function

Command

0x40

Read Temperature

0xAA

0x42

Write Temperature High

0x1

0x44

Write Temperature High

0x2

0x46

Read Temperature High

0xA1

0x48

Read Temperature Low

0xA2

0x4A

Read Counter

0xA0

0x4C

Read Slope

0xA9

0x4E

Start Convert Temperature

0xEE

0x50

Stop Convert Temperature

0x22

0x52

Write Config

0xC

0x54

Read Config

0xAC

0x56--0x5E

Not Allocated

 

 

 


2.2.5.      DAC Buffer settings

VME base Address :  0x100 to 0x1FE

 

VME Address

Bus Width

Rd/ Wr

Function

0x100--0x11E

16

R/w

Read default DAC Buffer settings from XCProm  (non volatile mode)

 

0x120--0x13E

16

R/w

Write new default DAC Buffer settings in XCProm (non volatile mode)

 

0x140--0x1FE

16

w only

Not allocated

 

 

 

2.2.6.      GIR Readout Control and Status register area

VME base Address : 0x300 to 0x3FE

 

VME Address

Bus Width

Read/ Write

Function

0x300

16

r/w

Event Counter Register

0x302

16

r/w

Item + Group no. for the event counter Register

0x300

32

read only

Item + Group no. + Event Counter

0x304

32

r/w

Fifo Test Access

0x308

16

r/w

DSP Control Register (See § 2.2.6.1 )

0x30A

16

r/w

GIR Readout Control Register (See § 2.2.7 )

0x30C

16

r only

Readout Status Register (See § 2.2.8 )

0x30E

16

r/w

Valack Timeout [3]

0x310 to 0x3FE

N.A.

r/w

Not yet Implemented

 

 

2.2.6.1.DSP Control Register : DCR

VME base Address : 0x308

 

Bit

Meaning when = 0

Meaning when = 1

0

Datas Transfert from ESS to DSP disable

Datas Transfert from ESS to DSP enable [4]

1

Datas Transfert between DSP and VXI bus disable

Datas Transfert between DSP and VXI bus enable

2

DSP Link Transfert Disable

DSP Link Transfert Enable

3

DMA Test Disable

DMA Test Enable

4 to 15

Not yet defined

Not yet defined

 

 

 


2.2.7.      GIRV5 Readout Control Register  : RCR

VME base Address : 0x30A

 

Bit Number

Meaning when = 0

Meaning when = 1

0

Disable Valack Timeout Reset

Enable Valack Timeout Reset

1

Enable Readout from GIRV5

Disable Readout from GIRV5(card is bypass)

2

Event Number Readout ON

Event Number Readout OFF

3

Qstat Disable

Qstat Enable

4

Pipeline Readout Disable

Pipeline Readout Enable

5

Common DeadTime Readout Disable

Common DeadTime Readout Enable

6

External Readout Disable

External Readout Enable

7

Test Mode Paril Disable

Test Mode Paril Enable

8 to 15

Not yet defined

Not yet defined

 

2.2.8.      GIRV5 Readout Status Register

VME base Address :0x30C

 

Bit Number

Meaning when = 0

Meaning when = 1

0

GIRV5 Temperature indicator is above the upper threshold

GIRV5 Temperature indicator is below the upper threshold

1

GIRV5 Temperature indicator is below the lower threshold

GIRV5 Temperature indicator is above the lower threshold

2

Temperature indicator 1 is above the upper threshold

Temperature indicator 1 is below the upper threshold

3

Temperature indicator 1 is below the lower threshold

Temperature indicator 1 is above the lower threshold

4

Temperature indicator 2 is above the upper threshold

Temperature indicator 2 is below the upper threshold

5

Temperature indicator 2 is below the lower threshold

Temperature indicator 2 is above the lower threshold

6

Valack Timeout deasserted

Valack Timeout asserted

8

Empty Flag of Fifo1 asserted

Empty Flag for Fifo1 deasserted

9

Full Flag of Fifo1 asserted

Full Flag for Fifo1 deasserted

10 to 15

not defined

not defined

 

2.2.9.      Readout Setup Area.

VME base Address :  0x400 to 0xFFE

 

VME Addresses

Bus Width

Read/ Write

Function

0x400 to 0x406

16

R/W

Readout Enable Register (See § 2.2.9.1 )

0x408 to 0x40E

16

R/W

Not Allocated

0x410 to 0x41C

16

R/W

Channel 0 Item / Group (See § 2.2.9.2 )

0x420 to 0x42C

16

R/W

Channel 1 Item / Group

0x430 to 0x43C

16

R/W

Channel 2 Item / Group

0x440 to 0x44C

16

R/W

Channel 3 Item / Group

0x44E to 0xFFE

N.A.

R/W

Not Allocated

 

 

2.2.9.1.Readout Enable Register

VME base Address :  0x400 TO 0x406

 

VME Address

Bus Width

Rd/ Wr

Function

0x400

16

R/W

Readout Enable Register for channel 0 (see §2.2.9.1.1)

0x402

16

R/W

Readout Enable Register for channel 1

0x404

16

R/W

Readout Enable Register for channel 2

0x406

16

R/W

Readout Enable Register for channel 3

 

2.2.9.1.1.      Readout Enable Register bits allocation.

 

Bit Number

Meaning when = 0

Meaning when = 1

0

Disable TDCQA Readout

Enable TDC QA Readout

1

Disable TDC QB Readout

Enable TDC QB Readout

2

Disable TDC QC Readout

Enable TDC QC Readout

3

Disable TDC QD Readout

Enable TDC QD Readout

4

Disable TDC 5 Readout

Enable TDC 5 Readout

5

Disable Pattern Readout

Enable Pattern Readout

6

Disable Energy Readout

Enable Energy Readout

10 to 15

not defined

not defined

 

 

2.2.9.2. Item / Group

VME Base Address : 0x4n0 to 0x4nC (n=1 to 4)

Details are given for channel 0.

Same functions are applied for address range   0x420 =>0x42C (channel 1)

                                                                                  0x430 =>0x43C (channel 2)

                                                                                  0x440 =>0x44C (channel 3)

 

VME Addresses

Bus Width

Read/ Write

Function

0x410

16

R/W

Define TDC QA Item / Group for Channel 0

0x412

16

R/W

Define TDC QB Item / Group for Channel 0

0x414

16

R/W

Define TDC QC Item / Group for Channel 0

0x416

16

R/W

Define TDC QD Item / Group for Channel 0

0x418

16

R/W

Define TDC 5 Item / Group for Channel 0

0x41A

16

R/W

Define Pattern Item / Group for Channel 0

0x41C

16

R/W

Define Energy Item / Group for Channel 0

 


2.3.            Channel Area Addresses

VME base Address : 0x1000 to0x13FE

0x1n54 to 0x1nFE : Not yet allocated (n is the channel number : 0,1,2,3)

 

 

VME ADDRESS

Bus Width

R/ W

Function

Channel 0 (0x1000 --0x10FE)

0x1000 to 0x101E

16

W

Dac Setting Registers (see § 2.3.1 )

0x1020

16

R/W

Channel Control Register  (see § 2.3.2 )

0x1022 to 0x103E

16

W

Time Alignment Registers (see § 2.3.3)

0x1040 to 0x1048

16

W

TDC Control Registers (see § 2.3.4 )

0x104A

16

W

Veto Delay [5]

0x104C

16

W

Veto Width [6]

0x104E

16

W

Pattern Width [7]

0x1050--0x1052

16

w only

DAC Buffer settings (Volatile mode)

Channel 1 (0x1100 --0x11FE)

0x1100 to 0x111E

16

W

Dac Setting Registers

0x1120

16

R/W

Channel Control Register

0x1122 to 0x113E

16

W

Time Alignment Registers

0x1140 to 0x1148

16

W

TDC Control Registers

0x114A

16

W

Veto Delay 1

0x114C

16

W

Veto Width 2

0x114E

16

W

Pattern Width 3

0x1150--0x1152

16

w only

DAC Buffer settings (Volatile mode)

Channel 2 (0x1200 --0x12FE)

0x1200 to 0x121E

16

W

Dac Setting Registers

0x1220

16

R/W

Channel Control Register

0x1222 to 0x123E

16

W

Time Alignment Registers

0x1240 to 0x1248

16

W

TDC Control Registers

0x124A

16

W

Veto Delay 1

0x124C

16

W

Veto Width 2

0x124E

16

W

Pattern Width 3

0x1250--0x1252

16

w only

DAC Buffer settings (Volatile mode)

Channel 3 (0x1300 --0x13FE)

0x1300 to 0x131E

16

W

Dac Setting Registers

0x1320

16

R/W

Channel Control Register

0x1322 to 0x133E

16

W

Time Alignment Registers

0x1340 to 0x1348

16

W

TDC Control Registers

0x134A

16

W

Veto Delay 1

0x134C

16

W

Veto Width 2

0x134E

16

W

Pattern Width 3

0x1350--0x1352

16

w only

DAC Buffer settings (Volatile mode)


2.3.1.       DAC Setting Registers:

VME Base Address = 0x1n00 to 0x1n1E (n=0 to 3)

Details are given for channel 0.

Same functions are applied for address range   0x1100 =>0x111E (channel 1)

                                                                                  0x1200 =>0x121E (channel 2)

                                                                                  0x1300 =>0x131E (channel 3)

 

Channel 0  (0x1000 --0x101E)

DAC Parameter Name

DAC Nb

0x1000

BGO QA Threshold (0 to 250 KeV in 1 KeV step)

DCS A

0x1002

BGO QB Threshold ( " " )

0x1004

BGO QC Threshold ( " " )

0x1006

BGO QD Threshold ( " " ))

0x1008

CSI QA Threshold ( " " )

0x100a

CSI QB Threshold ( " " )

0x100c

CSI QC Threshold ( " " )

0x100e

CSI QD Threshold ( " " )

0x1010

LT FT Sample (0 to 3V in 11.7mV step)

DCS B

0x1012

LT Validation Sample

0x1014

LT Watchdog Setup

0x1016

Not yet allocated

0x1018

Connect to DAC BGO Peak Detector

0x101A

Connect to DAC CSI Peak Detector

0x101C

Not yet allocated

0x101E

Not yet allocated

 

 

2.3.2.      CCR Definition

VME Address 0x1n20 (n=0 to 3)

 

Bit Number

Meaning when = 0

Meaning when = 1

0

Disable Channel

Enable Channel

1

LT started by BGO or CSI

LT started by Ge or BGO or CSI

2

Sliding Scale setup off

Sliding Scale setup on

3

Sliding Scale DAC = 0

Sliding Scale DAC = 0xFF

4 to 15

Not yet defined

Not yet defined

 

 


2.3.3.      Time Alignment Registers

VME Address 0x1n22 to 0x1n3E (n=0 to 3)

Details are given for channel 0.

Same functions are applied for address range   0x1122 =>0x113E (channel 1)

                                                                                  0x1222 =>0x123E (channel 2)

                                                                                  0x1322 =>0x133E (channel 3)

 

Channel 0  (0x1022 --0x103E)

Alignment Parameter Name

0x1022

BGO QA Alignment Delay

0x1024

BGO QB Alignment Delay

0x1026

BGO QC Alignment Delay

0x1028

BGO QD Alignment Delay

0x102a

CSI QA Alignment Delay

0x102c

CSI QB Alignment Delay

0x102e

CSI QC Alignment Delay

0x1030

CSI QD Alignment Delay

0x1032

Ge QA Alignment Delay

0x1034

Ge QB Alignment Delay

0x1036

Ge QC Alignment Delay

0x1038

Ge QD Alignment Delay

0x103A to 0x103E

Not allocated

 

The delay is defined with 6 bits data. The value can reach from 0x0 (0ns) to 0x3E (650ns) with a step of 10ns.

 

 

2.3.4.      TDC Control Registers

VME Base Address : 0x1n40 to 0x1n48  (n=0 to 3)

Details are given for channel 0.

Same functions are applied for address range   0x1140 =>0x1148 (channel 1)

                                                                                  0x1240 =>0x1248 (channel 2)

                                                                                  0x1340 =>0x1348 (channel 3)

 

Channel 0  (0x1040 --0x1048)

Parameter Name

0x1040

TDC QA Stop Select

0x1042

TDC QB Stop Select

0x1044

TDC QC Stop Select

0x1046

TDC QD Stop Select

0x1048

TDC 5 Stop Select

 

 


For TDC QA to TDC QD (4 quadrants), the 3 LSB of data bus are used to select which signal is the stop.

The 4 vetos (per crystal) are generated from the same signal selected to stop the corresponding TDC.

 

Data

Stop signal

0x0

BGO (nearest quarter)

0x1

BGO (whole shield)

0x2

CsI (nearest quarter)

0x3

CsI (whole shield)

0x4

BGO or CsI (nearest quarter)

0x5

BGO or CsI (whole shield)

0x6

RF

0x7

FT

 

 

For TDC5, the 4 LSB of data bus are used to select which stop and start signal are used.

 

Data

Start signal

Stop signal

0x0

RF

BGO (whole shield)

0x1

RF

CsI (whole shield)

0x2

RF

BGO or CsI (whole shield)

0x3

RF

Ge (OR of all Ge CFDs)

0x4

FT

BGO (whole shield)

0x5

FT

CsI (whole shield)

0x6

FT

BGO or CsI (whole shield)

0x7

FT

Ge (OR of all Ge CFDs)

0x8

Ge (OR of all Ge CFDs)

BGO (whole shield)

0x9

Ge (OR of all Ge CFDs)

CsI (whole shield)

0xA

Ge (OR of all Ge CFDs)

BGO or CsI (whole shield)

0xB

Ge (OR of all Ge CFDs)

Ge (OR of all Ge CFDs)

0xC to 0xF

Not used

Not used

 

 

 


3.           General figures

 

3.1.            GIRV5 Card Dimensions.

 

 


 

 


3.2.            PCB_AP board connections:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


3.3.            GIRV5 Shift registers connection figure

 

 

 

 

 

 

 

 

 

 


3.4.            GIRV5 Dac and potentiometer connection figure

 



[1]See the Euroball Trigger Specification by: I. Lazarus CLRC,, Daresbury U.K.

[2]See the Eurogam VXI Readout Specification by J. Alexander.

[3] multiple of 31.25 ns; 100 <t< 4 sec. Active when bit0 of RCR is 1 (See § 2.2.7 )

e.g. to have 100 us timeout write the value 0xC80 (3200).

 

[4] Bit 0 and bit 1 are valid only if the DSP Link Transfert is enable (bit 2 =1)

[5] 0x0 (0ns) to 0xF (170ns) step = 10ns (Veto Delay)

[6] 0x0 (0ns) to 0xFF (2570ns) step = 10ns (Veto Width)

[7] 0x0 (0ns) to 0xFF (2570ns) step = 10ns (Pattern Width)