
VXI Resource-Manager Basic Software

Christoph Ender

3-Sep-1990 Draft 0.4

This version of document is a draft one. Changes will be made with the progress of

discussion. It is for EUROGAM internal use only ! Do not distribute this draft document

to any other organisation outside the EUROGAM collaboration.

Note: together with this version of the software the phase model of the VXI/DAQ

tasks, processes is introduced. Together with that and other more re�ned de�nitions of

the ModuleDescription data base structure it allows a very detailed and �ne tuned control

over each step of operation in the live (that means from power up to controlled power

down, and during error recovery) of the software.

1 Introduction

This document speci�es the basic software of the VXI-RM in terms of their function, structure,

and data. It de�nes further the detailed interface between the RM and the user/application

software including a network based RPC access.

The aim of this software is to write an operation system independent software which is

executed in an early stage of the initialization of the VXI-RM processor. This has to be done

on a crate basis. In a later stage the connection to the other parts of the system (central data

base, data acquisition control, Event formatter, ... ) will be done.

2 Overview

The overall structure of the software is shown in Fig. ??. This picture gives an overview

to the parts related to this document. In addition the relationship between the data base

structures and the software is shown. The required data base tables in a brief overview are

displayed within a double lined box, the main programs are within the dashed box.

To meet the VXI-speci�cations it is required to split the execution into several phases as

shown in table ??. More details how this will work are explained in section ??

Access to the software from an external (other CPU, another crate) will be available via

two ways:

1. Network Interface using RPC calls, they are ontop of the TCP/IP network system. That

will be the normal way of operation for all network interaction, only a few requests will

response to multicast operations.

2. Console Interface

This part is required for a test interface, to display urgent error messages onto the

console terminal, and to interactive use of a VXIcrate for local tests and interactive

1



Hardware

VXI-RM access
routines
A16/D16

z
VXI-RM

VMEinterface
access DC,SC

z
Interrupt and

other support

Routines

z VXI Message passing

shared memory protocol �

IEEE 488.2 �

z

2

Initial and Autocon�g

Phase A

z

Initial Phase B
(z)

Data Acquisition

Control

Diagnostics

Tests
local data-
base handler

(z)

VXI Con�g Table

Address Map Table

z

Module description table

basic initial
basic Tests z

EUROGAM con�guration

DAQ channel table
statistics, spectras

Network Interface (RPC)

z

Console Interface

z

Figure 1: Software Overview. Parts marked with a � will be not implemented during the

�rst phase. Boxes marked with a z are part of the VXI-RM software. Sometimes only a

part of them is really related to the basic resource manager functions, another usage (not in

EUROGAM) will need only a subset. The parts in the dashed box are the programs which are

executed, all others are part of the support routines. The part with the double box contains

the data base tables.

2



Table 1: Phases of operation

No. Phase Model Description

Phase A

1. ini RM Software startup

.0 0 primary bootstrap of CPU

.a 1 ini a call of VXI-Initial Software

.b 2 ini b initial of internal data structures and variables

.c 3 ini c reset RM Registers by software

.d 4 ini d initial own VXI Registers

.e 5 ini e bring own registers in operation

.f 6 ini f check for possible salves and reset them

.g 7 ini g set end of primary initialisation

Test Phase A

2. stst Self test

.a 8 stst a self test of VXI-Registers (read/write functionality)

.b 9 stst b test available slaves (FADC, P3)

Phase A

3. 10 aconf Auto con�gure system

4. start start up of the operating system

. operating system is up, network is running

Phase B

5. 11 saconf Secondary Autocon�g and Initial

. 12 satst Secondary tests and diagnostics

6. 15 netw Start of Network part and connection to common data base

. 16 netwsynch synchronize all crates

Phase C

7. 20 oper Normal operation

3



diagnostics. Unfortunately the implementation will be in part dependent on the oper-

ation system (VxWorks, OS9, ... ). The planned software has to allow some primitive

access to the VXI registers, and to the local/global data base.

3 RM-basic software

This will be some kind of interface routines to access the VXI-RM via its logical and geographic

address space using A16/D16 access cycles. It is necessary to prepare the basic initialisation

to set up the con�guration tables which will be �lled out in detail in a later step.

The basic software routines covers the following parts:

� basic access routines (read/write short word) with logical addressing using A16/D16

access

� geographical addressing using the MODID register

� logical addressing using A16/D16 address

� creation and access to the VXIslot, VXIdevice, and the VXIcon�gtables

� creation and manipulation of Module Table

� creation and manipulation of the channel Table

� creation and manipulation of the address mapping table

� logical addressing using A16/D16 address

� access routines via A24 or A32

Beside this routines some additions for the error handling is necessary. The most impor-

tant is the control of the access within the VXI crate during VXIbus/VMEbus transfers. They

can be controlled for the right bus protocol using the CPU hardware. This hardware has to

report the error to the access routines. Implementation via the Bus Trap Error Routines.

3.1 RM initial Software

This part is described in detail within the VXI spec's section C.4.1 .

The �rst step has to be the primary initial the RM itself and the initial of it's own logical

address to 0 if the RM is itself a DC VXIbus device. With this initial a �rst test to check the

address bus and the databus via the P1/P2 adapter card should be foreseen.

3.2 Slave Interface

Beside the test and initial of the VXI-RM parts the �rst test of the slave part and the required

initialization has to be done.

The basic software will contain some routine to access the slave part. They include the

access to registers and allow block transfer in 16bit or 8 bit mode.

At the moment three di�erent slaves has to be initialized:

1. P2 A+C row adapter card

More Information will be found in a document by R. �Ohlschl�ager.

4



2. P3 card

This card contains the basic registers, which deal with the trigger lines. Currently four

registers are de�ned for that purpose. The initial has to make sure that the drivers are

all in an inactive state. A full speci�cation will be available in late September. After

that the software requirements can be speci�ed.

3. FALA card a combination of a 
ash ADC system and a small set of logic analyzer

system.

This card will have 32 registers. With the initial bit set in the control and status register

of this device it will be inactive. The next step will be the setup to the default values

to allow simple operation via the console interface. Details over that card will be found

within the FALA speci�cation.

4 Phase Model of the VXI Software

During de�nition of the software one reaches the point where several phases of initial and tests

has to be controlled. The easiest way is to allow for each phase several actions like initial,

test, diagnostics which are executed in that order. At the end of each phase the phase control

software checks that all tasks which may be stared during the execution of the di�erent action

have �nished and passes then the control to the next phase of operation.

With this general organisation one can organize the required actions of the VXI-RM

startup into this phase model. Also the phases which will occur later can be described very

easily in this picture. The only thing which is necessary is a clear de�nition about

the phases during the live of a processor / process / task, which has to be used by

all software components involved in the EUROGAM all successor experiments.

The table ?? might be a �rst de�nition of such a system.

Table 2: Phase model of the Data Acquisition Software live. This includes all phases which

has to be synchronized.

Local startup phase

0 primary boot

Global Synch phase

20 wait for all crates available

40 Start Data Acquisition

Global Asynchronous Operation Phase

100 General Consistency Check

Local Test and diagnostic

200 Test all Modules

In this model phases 0 ... 20 are local, per CPU de�ned phases which can be executed

from the system point of view asynchronously. After that all phases with number between 20

... 99 requires synchronisation between the di�erent parts of the data acquisition system.

5



5 Initial Phase (Auto Con�gure)

The initial phase takes place after the VXI-RM initial. It is called also Phase A and occupies

in the Phase model step 0 ... 10.

1. Identify all VXIbus devices in the crate (system) and write there current data values

into the VXI con�guration database.

2. Con�gure all resources required for the proper VXI-RM operation (allocate memory,

setup location monitor for message based operation)

3. start system self test and diagnostic sequence

4. construct A24 and A32 address maps. Therefore read address space requirements and

con�gure table in a way that there is no overlapping area. For both parts a separate

map is required. The AM (access modi�ers) ensures that there is no overlap even if

the address may be the same ! Nevertheless the overlap of addresses should be avoided.

Load after construction of the addresses the address registers.

5. Con�gure commander/servant hierarchy

At this time the primary selftest of the VXIdevice modules has to be ready for all

devices. Then the software has to prepare the RM in such a way that a primitive

message based protocol can be used. All associated message based devices has to be

someone's servant, at least the RM has to be a servant.

For the �rst phase of the EUROGAM project the VXI devices this will be implemented

in the simplest possible way, a register based device. therefore only a very simple way of

initialisation of the VXI-RM message protocol registers is required, There will be in the

near future (beginning 1991) no need to build message based modules. To allow then the

incorporation of other modules in a second phase of development of the RM software a

full set of message handling routines will be provided together with an implementation

of a 488.2 interface.

6. Initial normal operation

Bring all message based devices in operation.

After that the VXI crate is in a normal operation mode. For initial of the VXIbus devices for

use by EUROGAM further device dependent initialization is necessary. This will done after

the operating system of the VXI-RM is up and running.

6 Secondary Auto Con�gure

After the OS and the network is up and running we have access to the central database.

During this phase extended device tests and initial will take place. The information for this

tests and initial will be found in part in the module description, which is necessary even in

the primary initial phase to identify the modules itself. The other part of the information

will be stored in the central database. Therefore the VXIcrate has to interact with the data

base.

The connect between the two systems can be done via a broadcast request (Broadcast-

all-RPC) to the data base. The broadcast is necessary due the fact that the RM do not

6



know the network address of the data base server, on the other hand the data base server

also might not know the network address of the VXI crate. After the acknowledge of the

initial broadcast the normal interaction between the system will be done with RPC messages.

If there is no acknowledge within a certain time the request is repeated for up to 100 times

(5Min). If there is still no acknowledge after that time the VXIcrate will go into a local mode

only.

To bring the VXIcrate up, even in the case that the data base server was not available

within 5Min after network initial, it is allowed to access the VXIcrate by some kind of data

acquisition software with a claim crate procedure. After that the secondary Autocon�gure

phase may be requested via a RPC call from the data base server or by the data acquisition

control.

After the connect between the VXI crate and the central data base they has to exchange

the VXIcrate internal database. The information which have to be transported to the central

database are:

1. how many modules, VXI RM internal con�guration, network address

2. VXIdevice information, Module identi�ers, logical and geographic address, device ca-

pabilities, address mapping (A24/A32 address and size),

3. status information over failed modules

With this information the VXI-RM can retrieve module dependent test information from

the database and start the VXI device diagnostic tests (see a separate paper, which describes

the module database and test speci�cation software). After the tests are executed the results

are written back to the data base.

If the device has passed this tests it has to be initialized with some values which brings

the data acquisition modules in principle operation (default values).

After the last VXIdevice has passed this test and initial sequence the VXI-RM will forward

a message to the central data base and/or data acquisition control that it has �nished the

local con�gure, test and initial phase.

The VXIcrate can be used after that in by the acquisition control to start in the VXIcrate

another task which will do the load of the experiment speci�c values. Other tasks will be

available for online diagnostics and tests.

All these tasks has to go through common routines which provide the VXIcrate local

locking of modules (or part of modules). The necessary locking information will be located

inside the VXIcrate con�guration database.

7 Primitive Database

The VXI-RM has to setup for his own use a VXI system (as far as the RM can access VXI

crates) data base. For diagnostic this database should contain a copy of the con�guration

registers. But not only that one which can be read, also the hidden registers (note that

some registers carries several information read/write functions are di�erent). Beside that

information further areas for locking of a module. To allow a more general use of that

database it has to be VXIdevice independent.

The device dependent information will be found in the Module Data base. This describes

the modules itself and there requirements which will be not found in the VXI con�guration

registers.

7



Information found in the Module data base and the VXIcon�guration database allows the

VXI-RM to construct a data acquisition data base which can be used by the data acquisition.

This data base table will contain all device dependent status information, spectras,... .

7.1 VXI Con�guration Data Base

This part contains the a copy of all VXI con�guration registers. Dependent of the device

type (Memory, message, register, extended) all registers are stored here. The access routines

to the VXI con�guration space have to store here the information, which then can be used

for diagnostic and status informations.

The access to this data base should be done by a mapping table to get the right position

within this table to store or to read out the information. Due to the fact that a read of the

original VXI con�guration registers does not give the right information back, bit manipulation

operations need this copy of the data content of the hidden data register.

The VXI Con�guration data base has to index paths, one via the Slot number and the

second via the VXI logical device number (0 ... 254), the address 255 is reserved for dynamic

con�gurable devices.

7.2 Module description data base

To identify and to describe a module some informations over that are required. This infor-

mation will be found in this table. It will be include also some basic tests as well as the

identi�cation where to �nd further diagnostics and test programs.

The detailed form will be found in the data base speci�cation.

8 Network Interface

The Network Interface is required to allow the Data Acquisition system to send commands,

setup parameter, and control information to the VXI system. It acts then as in term of an

data acquisition crate, and performs the so called crate functions. There the crate has to

do functions like diagnostics, tests, and tuning of the data acquisition parameters itself like

gains, o�set, CFD parameters, ... .

In principle all the data can be divided into several classes.

1. access to the VXI modules via the VMEbus address space or the VXIspeci�c geo-

graphic/logical addressing specs.

2. access to the VXI-RM speci�c slaves like the FADC, P3 sub card, and some of the

special slave functions

3. access to the di�erent data base tables, to load or retrieve values

4. access to the message based functions

5. access to the primitive functions and the control over the RM

Up to now only the external access to the crate is explained. The VXI-RM base software

should have also the direct active access to the system. One point therefore is the communi-

cation with the Data base server to store there error{ and other useful logging informations.

8



The other point is to request the speci�c functions in the case of initialisation, power error,

or other important conditions which requires an immediate action.

As the basic organisation structure an RPC interface is foreseen. There all functions of

the basic software can be connected to the RPC interface quite easily.

At the moment it is not clear for me, which type of RPC model the proposed RPC interface

has to follow. Problems will be rising if we have several concurrent tasks, each with it's own

connection to a RPC channel, which can produce under certain conditions an deadlock. Also it

is not clear what will happen when several tasks (user application, data base server for periodic

requests, data acquisition control) on di�erent CPU's requests the same RPC channel on the

same target CPU. Implements the SUN RPC an asynchronous or a synchronous operation

model ???

9 Console Interface

This interface allows to access in a primitive way the VXI crate. It will be constructed around

an interpreter. Beside the very primitive operations like read and write operations, also access

to the VXI-RM databases are necessary. to be com-

pleted

10 Module Dependent Basic Con�guration

This part also called Autocon�guration part two will be implemented in a type of data base

scan, where the VXI-RM software will retrieve information from the database to execute then

the program/code/actions found there. This way of operation allows to de�ne an abstract

interface without knowing what type of interfaces will be used in future.

It is foreseen that an unlimited number of con�guration actions can be speci�ed in the

Module description data base (a text �le).

A Call Interface

Here the calls to the basic routines are speci�ed. The C speci�cation syntax is used.

A.1 VXI access functions

VXi access functions are these functions which write, read, or manipulate the VXI con�gu-

ration registers, including the message handling.

� basic access routines (read/write short word) with logical addressing using A16/D16

access

{ status = VXIreadLogA16D16(LogicalAddress,Offset,&Data)

{ status = VXIwriteLogA16D16(LogicalAddress,Offset,Data)

LogicalAddress The VXI logical device number

Offset O�set within VXI device con�guration area

Data 16bit data word to read or to write

9



Status The routines gives back a status words to signal that the data are trans-

ferred successful by the hardware (no Bus Error), that the LogicalAddress is within

a valid range1. In addition the o�set is also tested for a valid range (0:::63)10.

� geographical addressing using the MODID register

{ status = VXIreadGeoA16D16(SlotNr,LogicalAddress,Offset,&Data)

{ status = VXIwriteGeoA16D16(SlotNr,LogicalAddress,Offset,Data)

Same as above

SlotNr VXIcrate slot number to access Modules using the MODID line

A.2 VME access functions

� logical addressing using A16/D16 address

{ status = VXIreadA16D16(LogicalAddress,&Data)

{ status = VXIwriteA16D16(LogicalAddress,Data)

{ status = VXIreadBlockA16D16(LogicalAddress,Number,&Data)

{ status = VXIwriteBlockA16D16(LogicalAddress,Number,&Data)

� access routines via A24 or A32

{ status = VXIreadA24D16(Address,&Data)

{ status = VXIwriteA24D16(Address,Data)

{ status = VXIreadBlockA24D16(Address,SizeOfBlock,&Data)

{ status = VXIwriteBlockA24D16(Address,SizeOfBlock,&Data)

{ status = VXIreadA32D16(Address,&Data)

{ status = VXIwriteA32D16(Address,Data)

{ status = VXIreadBlockA32D16(Address,SizeOfBlock,&Data)

{ status = VXIwriteBlockA32D16(Address,SizeOfBlock,&Data)

{ status = VXIreadA24D32(Address,&Data)

{ status = VXIwriteA24D32(Address,Data)

{ status = VXIreadBlockA24D32(Address,SizeOfBlock,&Data)

{ status = VXIwriteBlockA24D32(Address,SizeOfBlock,&Data)

{ status = VXIreadA32D32(Address,&Data)

{ status = VXIwriteA32D32(Address,Data)

{ status = VXIreadBlockA32D32(Address,SizeOfBlock,&Data)

{ status = VXIwriteBlockA32D32(Address,SizeOfBlock,&Data)

1After the initial only access to autocon�gured VXIdevices is allowed.

10



A.3 Slave Functions

To access the VXI-RMslave interfaces six functions can provide a full functional programming

interface.

� err = slave read(slave addr,&data)

� err = slave write(slave addr,data)

� err = slave read block(slave addr,N datawords,&data)

16 Bit transfer

� err = slave read block8(slave addr,N datawords,&data) 8 bit data transfer

� err = slave write block(slave addr,N datawords,&data)

� err = slave write block8(slave addr,N datawords,&data)

A.4 Data Base functions

� creation of VXIdevice con�guration table The access to the con�guration Table can be

done in two ways: �rst to use the geographical access to select a module, or by use the

logical addressing by speci�cation of the VXIbus device (0...254). The con�guration

table is constructed in a way that both allows the access to all data.

{ status = VXIDBcreateConfigTable(TableAddress , SizeOfEntry)

{ status = VXIDBinsertConfigTable(SlotNumber , Offset , Data)

{ status = VXIDBgetConfigTableEntry(SlotNumber , &DBrecord)

{ status = VXIDBputConfigTableEntry(SlotNumber , &DBrecord)

{ status = VXIDBinsertDeviceTableEntry(LogicalAddress , Offset , &DBrecord)

{ status = VXIDBgetDeviceTableEntry(LogicalAddress , &DBrecord)

{ status = VXIDBputDeviceTableEntry(LogicalAddress , &DBrecord)

� creation and manipulation of Module Table

{ status = VXIDBcreateModuleTable(TableAddress , SizeOfEntry , NumberOfEntries)

{ status = VXIDBinsertModuleTable(ModuleID , TypeOfEntry , &MDBentry)

{ status = VXIDBfindInModuleTable(ModuleID , TypeOfEntry , &MDBrecord)

{ status = VXIDBgetModuleTable(ModuleID , TypeOfEntry , &MDBrecord)

{ status = VXIDBputModuleTable(ModuleID , TypeOfEntry , &MDBrecord)

� creation and manipulation of the channel Table

{ status = VXIDBcreateChannelTable(TableAddress , SizeOfEntry , NumberOfEntries)

{ status = VXIDBinsertChannelTable()

{ status = VXIDBfindChannelTable()

{ status = VXIDBgetChannelTable()

{ status = VXIDBputChannelTable()

11



A.5 Autocon�gure Functions

� creation and manipulation of the address mapping table

{ status = VXIDBcreateAddressMapTable(TableAddress)

{ status = VXIDBinsertAddressMapEntry(Type , VXIDeviceNumber , Size)

{ status = VXIDBconstructAddressMap(Type)

{ status = VXIDBgetAddressMapEntry(Type , VXIdeviceNumber , AddressOfset)

� related to overall autocon�guration

{ status = VXI AutoConfig initial()

{ status = VXI AutoConfig PhaseA()

{ status = VXI AutoConfig PhaseB()

� other support routines like Bus Trap Error, error display

A.6 Access of VXIsystem Functions

There will be two di�erent ways of access: local and global. In this section the local access

(also stand alone access) is addressed.

� Console Interface

� Reset functions

A.7 Network speci�c part

� access to other crates

� access to data base server

� access from other crates

� access from data base server

� access from application programs

� Reset system

� error logging

B Software Modules (Overview)

B.1 De�nition Files

The de�nition �les can be divided into several classes:

1. CPU and Operating System type speci�c: to hide system dependencies. This is not re-

ally necessary for EUROGAM because of the use of the MVM147 CPU under VxWorks.

For the development other Systems will be used. There and even in a later phase of

the project there might be changes, so we need some universal de�nition �les to hide

all dependencies.

The �les are:

12



� CPU_E5.H

� CPU_MVM147.H

� CPU_VAX.H

� OS_OS9.H

� OS_VMS.H

� OS_VXWORKS.H

2. Universal VXI de�nitions will be also available

� VXI_CONF_REG.H

3. The Resource Manager Data Registers, the 
ash ADC part, and P2/P3 card

� VXI_EGRM.H

� VXI_FALA.H

� VXI_P3.H

4. Data Base part

� VXI_DB_CONF.H

� VXI_DB_DAQ_CHANNEL.H

� VXI_DB_MODULE.H

5. Network part not written yet

B.2 Code Modules

B.3 Program/Task Modules

B.4 Data Base Programs

B.5 Support Programs

B.6 Programs for Test of Software

13


