The QCD Phase Diagram from Lattice Simulations

Simon Hands University of Wales Swansea

- **Difficulties at** $\mu \neq 0$
- Progress at small μ/T
- Taylor Expansion of the Free Energy
- Color Superconductivity
- Superfluidity in the NJL model

Daresbury 3^{rd} March

The QCD Phase Diagram

Bluffer's Guide to Lattice QCD

Feynman Path Integral for QCD

$$\langle \mathcal{O}(\psi,\bar{\psi},A_{\mu})\rangle = \frac{1}{Z} \int D\psi D\bar{\psi} DA_{\mu} \mathcal{O}e^{\frac{i}{\hbar}\int_{x}(\bar{\psi}M[A_{\mu}]\psi + \frac{1}{4}F_{\mu\nu}F^{\mu\nu})}$$

with $Z \equiv \langle 1 \rangle$

Two technical tricks:

• Analytically continue from Minkowski to Euclidean space $t \mapsto ix_4$ FPI has better convergence properties

• Discretise $F_{\mu\nu}$ and M on a 4d spacetime lattice FPI becomes an ordinary multi-dimensional integral

 $\langle \mathcal{O} \rangle$ can now be estimated numerically using Monte Carlo importance sampling, in effect "simulating" quantum fluctuations of the $\psi, \bar{\psi}$ and A_{μ} fields

States can be analysed by choosing \mathcal{O} with appropriate quantum numbers and then measuring the energy via decay in Euclidean time:

 $\langle \mathcal{O}(0)\mathcal{O}^{\dagger}(x_4)\rangle \propto e^{-Ex_4}$

Thermal effects modelled by restricted the time extent of the Euclidean universe to $0 < x_4 < \beta \Rightarrow$

Z includes all excitations with Boltzmann weight $e^{-\beta E}$, ie. $\langle \mathcal{O} \rangle = \frac{1}{Z} \sum_{i} \mathcal{O}_{i} e^{-\frac{E_{i}}{kT}}$

with temperature $T = \beta^{-1}$

Lattice currently the most systematic way of studying QCD with T > 0Best estimate for deconfining transition:

$$T_c \simeq 170(5) \mathrm{MeV}$$

Equation of State at $\mu_B = 0$ ($L_t = 4$)

• For $N_f = 2$ transition is crossover

- For $N_f = 3$ and $m < m_c$ transition is first order
- For realistic " $N_f = 2 + 1$ " a crossover currently favoured

NB
$$\frac{p_{SB}}{T^4} = \frac{8\pi^2}{45} + N_f \left[\frac{7\pi^2}{60} + \frac{1}{2}\left(\frac{\mu_q}{T}\right)^2 + \frac{1}{4\pi^2}\left(\frac{\mu_q}{T}\right)^4\right]$$

The Sign Problem for $\mu \neq 0$

In Euclidean metric the QCD Lagrangian reads

$$\mathcal{L}_{QCD} = \bar{\psi}(M+m)\psi + \frac{1}{4}F_{\mu\nu}F_{\mu\nu}$$

with $M(\mu) = D[A] + \mu \gamma_0$

Straightforward to show $\gamma_5 M(\mu)\gamma_5 \equiv M^{\dagger}(-\mu) \Rightarrow \det M(\mu) = (\det M(-\mu))^*$

ie. Path integral measure is not positive definite for $\mu \neq 0$ Fundamental reason is explicit breaking of time reversal symmetry

Monte Carlo importance sampling, the mainstay of lattice QCD, is ineffective

A formal solution to the Sign Problem is *reweighting* ie. to include the phase of the determinant in the observable:

$$\langle \mathcal{O} \rangle \equiv \frac{\langle \langle \mathcal{O} \operatorname{arg}(\operatorname{det} M) \rangle \rangle}{\langle \langle \operatorname{arg}(\operatorname{det} M) \rangle \rangle}$$

with $\langle \langle ... \rangle \rangle$ defined with a positive measure $|\det M| e^{-S_{boson}}$

Unfortunately both denominator and numerator are exponentially suppressed:

$$\langle \langle \arg(\det M) \rangle \rangle = \frac{\langle 1 \rangle}{\langle \langle 1 \rangle \rangle} = \frac{Z_{true}}{Z_{fake}} = \exp(-\Delta F) \sim \exp(-\#V)$$

Expect signal to be overwhelmed by noise in thermodynamic limit $V \to \infty$

Two Routes into the Plane

(I) Analytic continuation in μ/T by either Taylor expansion @ $\mu = 0$ Gavai & Gupta; QCDTARO Simulation with imaginary $\tilde{\mu} = i\mu$ de Forcrand & Philipsen; d'Elia & Lombardo effective for $\frac{\mu}{T} < \min\left(\frac{\mu_E}{T_E}, \frac{\pi}{3}\right)$

(II) Reweighting along transition line $T_c(\mu)$ Fodor & Katz Overlap between (μ, T) and $(\mu + \Delta \mu, T + \Delta T)$ remains large, so multi-parameter reweighting unusually effective

The Bielefeld/Swansea group used a hybrid approach; ie. reweight using a Taylor expansion of the weight:

Allton et al, PRD66(2002)074507

$$\ln\left(\frac{\det M(\mu)}{\det M(0)}\right) = \sum_{n} \frac{\mu^{n}}{n!} \frac{\partial^{n} \ln \det M}{\partial \mu^{n}}\Big|_{\mu=0}$$

This is relatively cheap and enables the use of large spatial volumes $(16^3 \times 4 \text{ using } N_f = 2 \text{ flavors of p4-improved staggered fermion}).$ Note with $L_t = 4$ the lattice is coarse: $a^{-1}(T_c) \simeq 700 \text{MeV}$

The (Pseudo)-Critical Line

[E. Laermann & O. Philipsen, Ann.Rev.Nucl.Part.Sci.53:163,2003]

Remarkable consensus on the curvature...

RHIC collisions operate in region $\mu_B \sim 45 \text{MeV}$

The pseudocritical line found lies well above the (μ_B, T) trajectory marking chemical freezeout in RHIC collisions

 \Rightarrow is there a region of the phase diagram where *hadrons* interact very strongly (ie. inelastically)? <u>So what?</u>

The Critical Endpoint μ_E/T_E

Reweighting estimate via Lee-Yang zeroes $\mu_E/T_E = 2.2(2)$

Z. Fodor & S.D. Katz JHEP0404(2004)050

Taylor expansion estimate from apparent radius of convergence

 $\mu_E/T_E \gtrsim |c_4/c_6| \sim 3.3(6)$ Allton *et al* PRD68(2003)014507

Analytic estimate via Binder cumulant $\langle (\delta O)^4 \rangle / \langle (\delta O)^2 \rangle^2$ evaluated at imaginary $\mu \Rightarrow \mu_E / T_E \sim O(20)!$ P. de Forcrand & O. Philipsen NPB673(2003)170

Taylor Expansion

In our most recent work we develop the Taylor expansion of the free energy to $O((\mu_q/T)^6)$ (recall $c_6^{SB} = 0$):

$$\frac{p}{T^4} = \sum_{n=0}^{\infty} c_n(T) \left(\frac{\mu_q}{T}\right)^n \quad \text{with} \quad \frac{c_n(T)}{n!} = \frac{1}{n!} \frac{\partial^n(p/T^4)}{\partial(\mu_q/T)^n} \Big|_{\mu_q = 0}$$

Similarly we define expansion coefficients

$$c_n^I(T) = \frac{1}{n!} \frac{\partial^n (p/T^4)}{\partial (\mu_I/T)^2 \partial (\mu_q/T)^{n-2}} \bigg|_{\mu_q = 0, \mu_I = 0}$$

Equation of State Allton et al PRD68(2003)014507

Growth of Baryonic Fluctuations

Quark number susceptibility $\chi_q = \frac{\partial^2 \ln Z}{\partial \mu_q^2}$ appears singular near $\mu_q/T \sim 1$; isospin susceptibility $\chi_I = \frac{\partial^2 \ln Z}{\partial \mu_I^2}$ does not

Massless field at critical point a combination of the Galilean scalar isoscalars $\bar{\psi}\psi$ and $\bar{\psi}\gamma_0\psi$?

The QCD Phase Diagram

χ SB vs. Cooper Pairing

Color Superconductivity

In the asymptotic limit $\mu \to \infty$, $g(\mu) \to 0$, the ground state of QCD is the *color-flavor locked* (CFL) state characterised by a BCS instability, [D. Bailin and A. Love, Phys.Rep. 107(1984)325] ie. diquark pairs at the Fermi surface condense via

$$\langle q_i^{\alpha}(p)C\gamma_5 q_j^{\beta}(-p)\rangle \sim \varepsilon^{A\alpha\beta}\varepsilon_{Aij} \times \text{const.}$$

breaking $SU(3)_c \otimes SU(3)_L \otimes SU(3)_R \otimes U(1)_B \otimes U(1)_Q \longrightarrow SU(3)_\Delta \otimes U(1)_{\tilde{Q}}$

The ground state is simultaneously superconducting (8 gapped gluons, ie. get mass $O(\Delta)$),

superfluid (1 Goldstone), and transparent (all quasiparticles with $\tilde{Q} \neq 0$ gapped). [M.G. Alford, K. Rajagopal and F. Wilczek, Nucl.Phys.B537(1999)443]

The NJL Model

Effective description of soft pions interacting with nucleons

$$\mathcal{L}_{NJL} = \bar{\psi}(\partial \!\!\!/ + m + \mu\gamma_0)\psi - \frac{g^2}{2}[(\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5\vec{\tau}\psi)^2]$$

$$\sim \bar{\psi}(\partial \!\!\!/ + m + \mu\gamma_0 + \sigma + i\gamma_5\vec{\pi}.\vec{\tau})\psi + \frac{2}{g^2}(\sigma^2 + \vec{\pi}.\vec{\pi})$$

Introduce isopsin indices so full global symmetry is $SU(2)_L \otimes SU(2)_R \otimes U(1)_B$

Dynamical χ SB for $g^2 > g_c^2 \Rightarrow$ isotriplet Goldstone $\vec{\pi}$

Scalar isoscalar diquark $\psi^{tr}C\gamma_5\otimes \tau_2\otimes A^{color}\psi$ breaks U(1)_B

 \Rightarrow diquark condensation signals high density ground state is superfluid

Model is renormalisable in 2+1d so GN analysis holds

In 3+1*d*, an explicit cutoff is required. We follow the large- N_f (Hartree) approach of Klevansky (1992) and match lattice parameters to low energy phenomenology:

Phenomenological	Lattice Parameters
Observables fitted	extracted
$\Sigma_0 = 400 \text{MeV}$	ma = 0.006
$f_{\pi} = 93 \mathrm{MeV}$	$1/g^2 = 0.495$
$m_{\pi} = 138 \mathrm{MeV}$	$a^{-1} = 720 \mathrm{MeV}$

The lattice regularisation preserves

 $SU(2)_L \otimes SU(2)_R \otimes U(1)_B$

Equation of State and Diquark Condensation

Equation of State and Diquark Condensation

The Superfluid Gap

Quasiparticle propagator:

$$\langle \psi_u(0)\bar{\psi}_u(t)\rangle = Ae^{-Et} + Be^{-E(L_t-t)} \langle \psi_u(0)\psi_d(t)\rangle = C(e^{-Et} - e^{-E(L_t-t)})$$

Results from $96 \times 12^2 \times L_t$, $\mu a = 0.8$ extrapolated to $L_t \to \infty$ (ie. $T \to 0$) then $j \to 0$

The gap at the Fermi surface signals superfluidity SJH & D.N. Walters PLB548(2002)196 PRD69(2004)076011

• $\Delta/\Sigma_0 \simeq 0.15 \Rightarrow \Delta \simeq 60 \text{MeV}$ in agreement with self-consistent approaches

Similar formalism to study non-relativistic model for
EITHER nuclear matter (with or without pions)
⇒ calculation of E/A
D. Lee & T. Schäfer nucl-th/0412002
OR Cold atoms with tunable scattering length
⇒ study of BEC/BCS crossover M. Wingate cond-mat/0502372

In either case non-perturbative due to large dimensionless parameter $k_F|a| \gg 1$, with *a* the *s*-wave scattering length.

Approaches with different systematics are yielding encouraging agreement on the critical line $T_c(\mu)$

- Approaches with different systematics are yielding encouraging agreement on the critical line $T_c(\mu)$
- Still no consensus on location of the critical endpoint, but NO OBVIOUS OBSTACLE to calculation of μ_E/T_E

- Approaches with different systematics are yielding encouraging agreement on the critical line $T_c(\mu)$
- Still no consensus on location of the critical endpoint, but NO OBVIOUS OBSTACLE to calculation of μ_E/T_E
- Need better control over: statistics; approach to the chiral limit; above all over approach to continuum limit

- Approaches with different systematics are yielding encouraging agreement on the critical line $T_c(\mu)$
- Still no consensus on location of the critical endpoint, but NO OBVIOUS OBSTACLE to calculation of μ_E/T_E
- Need better control over: statistics; approach to the chiral limit; above all over approach to continuum limit
- **•** Evidence for superfluidity in NJL_{3+1}

- Approaches with different systematics are yielding encouraging agreement on the critical line $T_c(\mu)$
- Still no consensus on location of the critical endpoint, but NO OBVIOUS OBSTACLE to calculation of μ_E/T_E
- Need better control over: statistics; approach to the chiral limit; above all over approach to continuum limit
- **•** Evidence for superfluidity in NJL_{3+1}
- For the future:

is there a model with long-range interactions which interpolates between BEC and BCS? what is the physical origin of the sign problem?

- Approaches with different systematics are yielding encouraging agreement on the critical line $T_c(\mu)$
- Still no consensus on location of the critical endpoint, but NO OBVIOUS OBSTACLE to calculation of μ_E/T_E
- Need better control over: statistics; approach to the chiral limit; above all over approach to continuum limit
- **•** Evidence for superfluidity in NJL_{3+1}
- For the future:

is there a model with long-range interactions which interpolates between BEC and BCS? what is the physical origin of the sign problem? And finally...