

Heavy Ion Collisions at the LHC

The Physics of ALICE

Presented by David Evans University of Birmingham

Workshop on QCD in Nuclear and Hadronic Physics 3rd – 4th March 2005 - Daresbury

Outline of Talk

Introduction to the physics of Quark Matter
 Aims of Heavy Ion physics
 The Quark-Gluon Plasma
 Quick Review of SPS Heavy-Ion Results
 Heavy Ion physics at the LHC
 ALICE physics potential
 Summary

Aim of Heavy Ion Physics

• Study strongly interacting matter at extreme energy densities over large volumes and long time-scales. Study QCD on its natural scale ($\Lambda_{\rm QCD}$).

• Study the QCD phase transition from hadronic matter to a deconfined state of quarks and gluons - The Quark-Gluon Plasma. Only phase transition predicted by the Standard Model within reach of laboratory experiments.

•Study the physics of the Quark-Gluon Plasma.

• Study the role of chiral symmetry in the generation of mass in hadrons (accounts for 98% of mass of hadronic matter).

Study of QCD and confinement under extreme conditions - test of nonperturbative QCD.

A Brief History

SPS heavy ion programme 1986 with Oxygen ions 1987 - 1993 Sulphur ions 1994 - 2000 Lead ions

Whole family of SPS experiments studying different observables (strangeness, J/ψ , photons, di-leptons ...

Feb 2000: CERN announces that deconfined Quark Matter observed.

Strangeness enhancement from NA57

Why Heavy Ions @ LHC ?

factor 30 jump in \sqrt{s}

Central collisions	SPS	RHIC	LHC
s ^{1/2} (GeV)	17	200	5500
dN _{ch} /dy	500	650	3-8 x10 ³
ε (GeV/fm ³)	2.5	3-5	15-40
V _f (fm ³)	10 ³	7x10 ³	2x10 ⁴
$ au_{QGP}(fm/c)$	<1	1.5-4.0	4-10
$\tau_0 (fm/c)$	~1	~0.5	<0.2

hotter - bigger -longer lived

David Evans

Overall view of the LHC experiments.

PbPb collisions at 1150 TeV = 0.18 mJ

David Evans

ALICE Acceptance

- <u>central barrel</u> -0.9 < η < 0.9
 - tracking, PID
 - single arm **RICH** (HMPID)
 - single arm **em. calo** (PHOS)
- **forward muon arm** $2.4 < \eta < 4$
 - absorber, dipole magnet tracking & trigger chambers
- **<u>multiplicity</u>** -5.4 < η < 3
 - including photon counting in PMD
- <u>trigger & timing</u> dets
 - Zero Degree Calorimeters
 - **T0:** ring of quartz window PMT's
 - V0: ring of scint. Paddles

Experimental conditions @ LHC

- pp commissioning starts April 2007
- Wish list of the HI community for the LHC
 - Initial few years (1HI 'year' = 10⁷)
 - 2 3 years Pb-Pb
 - $1 year p Pb 'like' (p, d or \alpha)$
- $L \sim 10^{29} \text{ cm}^{-2} \text{s}^{-1}$

 $L \sim 10^{27} \text{ cm}^{-2} \text{s}^{-1}$

- 1 year light ions (eg Ar-Ar)
 L ~ few 10²⁷ to 10²⁹ cm⁻²s⁻¹
 plus, for ALICE (limited by pileup in TPC):
- reg. pp run at $\sqrt{s} = 14 \text{ TeV}$ L ~ 10²⁹ and < 3x10³⁰ cm⁻²s⁻¹
- Later: different options depending on Physics results
- Heavy Ion running part of LHC initial programme, 1 month of heavy ion running per year.

Observables

Observables – Lattice Thermodynamics

David Evans

Observables

Soft Regime Hard Regime Semi-hard Regime $p_{\rm t} = 0 - 2 \, {\rm GeV/c}$ $p_{\rm t} = 2 - 5/10 \; {\rm GeV/c}$ $p_{\rm t} > 10 \; {\rm GeV/c}$ non-perturbative perturbative Thermal photons Particle yields • Hard photons \rightarrow temp. evolution \rightarrow chem. freeze-out Open beauty, Υ HBT interferometry Open charm, J/ψ • \rightarrow thermal freeze-out Jets \rightarrow plasma screening Flow ٠ $p_{\rm t}$ -Spectra \rightarrow expansion \rightarrow initial collisions \rightarrow mini-jets \rightarrow ALICE will cover the transition from the hard (partonic) to the soft

 \rightarrow ALICE will cover the transition from the hard (partonic) to the soft (hadronic) regime

→ Correlations between soft and hard probes only possible within ALICE

Degree of chemical equibrium:⇒ Constraint on timescales of flavour production mechanism

David Evans

J/w Suppression

Colour screening in QGP: Screening radius < size of J/ψ (~0.5 fm) So cc̄ bound state cannot survive in QGP. Seen at SPS energies

At LHC energies, colour screening could be strong enough to break-up Υ (bb) or maybe just Υ ' or Υ ''.

Γ_{J/Ψ}

ū

Secondary J/Ψ from B Meson Decays

- $B \rightarrow J/\Psi \rightarrow e^+e^-$ (BR: ~1%)
- Large contribution to observable J/Ψ signal
- Possibility to disentangle primary and secondary

Parton Energy Loss

Parton Energy Loss

Medium induced gluon radiation

- Depends on traversed distance $\propto L^2$
- Stronger in deconfined matter

Effects:

- Reduction of single inclusive high p_t particles
 - Parton specific (stronger for gluons than quarks)
 - Flavour specific (stronger for light quarks)
 - Measure identified hadrons (p, K, p, L, etc.) + partons (charm, beauty) at high p_t

- Suppression of mini-jets
 - same-side / away-side correlations
- Change of fragmentation function for hard jets ($p_t >> 10 \text{ GeV/c}$)
 - Transverse and longitudinal fragmentation function of jets
 - Jet broadening → reduction of jet energy, dijets, g-jet pairs
- p+p and p+A measurements crucial

Φ Production

Worl

• Decay $\Phi \rightarrow K^+K^-$ simulated.

- PID from TPC and TOF
- Decays superimposed on HIJING events with dN/dy = 6000

S/√(B+S) p_T GeV/c S/B S < 0.6 32263 0.00 0.6-0.8 115628 0.00 21 32 0.8 - 1.0163148 0.01 33 1.0 - 1.2121569 0.01 1.2-1.4 31 80384 0.01 30 1.4 - 1.657068 0.02 1.6-1.8 44640 0.02 30 31 1.8-2.0 38410 0.03 2.0-2.2 33464 0.03 32 >22 115217 0.06 80

David Evans

Φ Production II

PER AD ALTA

Other Resonances in ALICE

Resonance production studies in ALICE still in early stages This example shows K*(890) production in pp interactions. More soon.

K+ π - effective mass spectrum for pp interactions, assuming perfect PID.

pp physics

All HI observables have to be measured also in pp collisions for comparison with heavy-ion results

However, there are interesting questions regarding pp collisions themselves

- charged multiplicity distribution
- correlations between mean p_t and multiplicity or strangeness
 study of diffractive events with large rapidity gaps
- jets

David Evans

-J/ ψ cross-section -Black holes

- lower p_T cut-off
- particle identification

Birmingham Responsibility

The ALICE Trigger Electronics

(The CTP trigger inputs and the RoI inputs not shown)

The Birmingham Group is Responsible for designing, building and commissioning ALICE trigger electronics.

Gives us a high profile within ALICE Collaboration.

David Evans

Birmingham's Physics Interests

Currently, the group is concentrating its efforts on protonproton physics at ALICE – likely only to have protons in the first year, hence good to make an impact early. Currently working on: strangeness production strongly decaying resonance production Would like get involved in a wider range of physics – need more manpower.

Summary

- ALICE will be able to study the physics of quark matter in detail.
 - almost all known observables
 - from early to late stages of QGP
- UK (Birmingham) playing a key role
- Concentrating on proton physics for now.
- We look forward to lots of exciting physics from 2007.