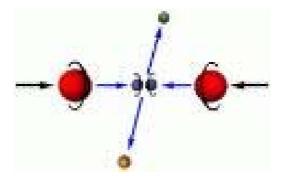
Physics and Prospects of RHIC Spin and eRHIC

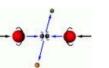
Abhay Deshpande State University of New York at Stony Brook RIKEN-BNL Research Center, BNL

Workshop on QCD in Nuclear & Hadronic Physics March 3-4, 2005 CCLRC Daresbury Laboratory

Abhay Deshpande, March 3, 2005

March 1, 2005, 8:15 AM Long Island NY While I am waiting for the snow emergency to clear!

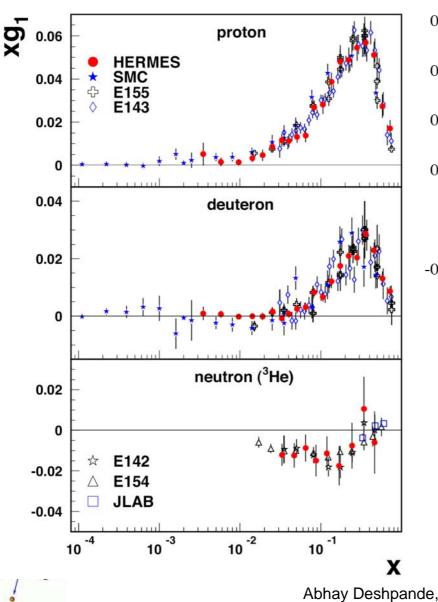

Outline

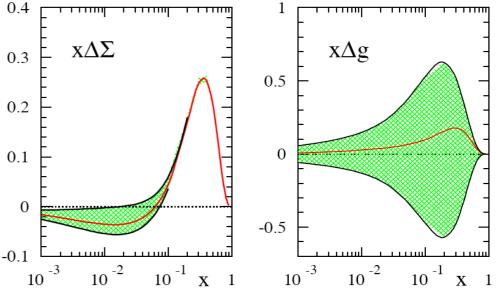

- The RHIC Spin Program status and plans
 - Relativistic Heavy Ion collider as a polarized p-p collider
 - Proton beam polarimetry
 - The Collider Detectors: PHENIX and STAR & their measurements
 - Near future prospects at time-lines
 - Accelerator development plans
 - Future physics measurements
- The eRHIC polarized & un-polarized DIS beyond RHIC
 - The eRHIC collider parameters and physics potential
 - The polarized and un-polarized physics program with eRHIC
 - The accelerator development and modifications to RHIC
 - Various options and consequences
 - Detector ideas
 - Status, plans and time scales

Nucleon Spin Structure and RHIC Spin

A near term perspective

Abhay Deshpande, March 3, 2005

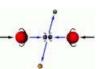

Milestones: Exploring Nucleon Spin


- The Proton Spin Crisis (DIS Experiment: European Muon Collaboration, EMC, 1989 at CERN)
- Many experimental efforts initiated: Spin Muon Collaboration, COMPASS at CERN, E142---E155 at SLAC, HERMES at DESY
 - Confirmed the results of the of EMC
 - New precision pushed development of precision theoretical tools
 - Attempts to understand the role of gluons in nucleon spin started
- Next-to-Leading Order calculations to analyze the data became available
 - Spin ``Crisis" turned to Spin ``Puzzle"

• RHIC Spi $\frac{1}{2} = \langle S_q \rangle + \langle S_g \rangle + \langle L_q \rangle + \langle L_g \rangle$ th eRHIC future

$xg_1^p, x\Delta\Sigma, x\Delta G$: our present knowledge

World's data on g_1 of the p, D and ³He (neutrons)


Next to Leading Order pQCD analysis leads to polarized parton distributions including the gluon which has large uncertainties

March 3, 2005

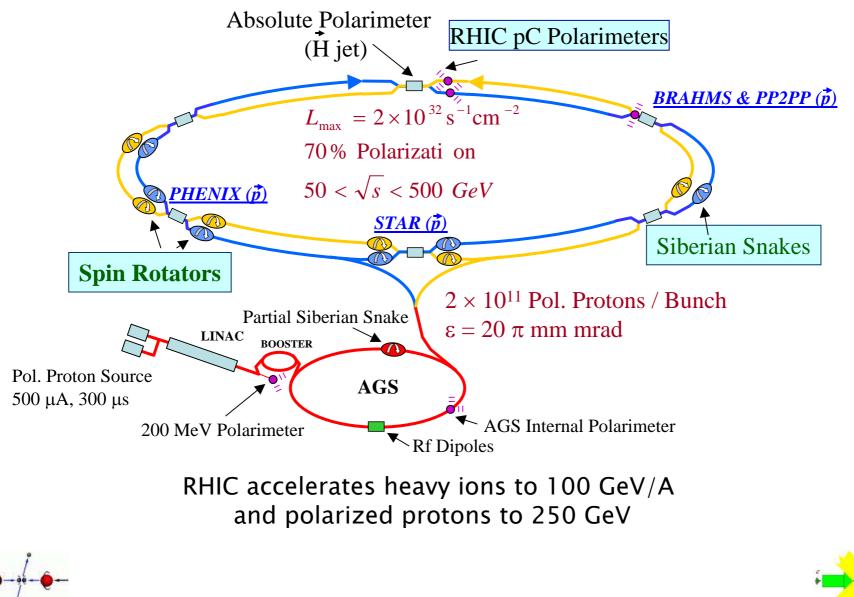
Nucleon Spin: Some compelling questions

- How do gluons contribute to the nucleon spin?
 - $1/\alpha_s(Q^2)$ evolution and significance of high scales at RHIC?
- What are the patterns of u, d, s quark and anti-quark polarizations?
 - In DIS virtual photon(s) explore (∆q+∆qbar) not individually ∆q and ∆qbar; separating them is of significance in view of
 - ubar dbar non zero! From DIS and DY measurements; s-sbar quark asymmetry and NuTeV results of 3- σ anomaly in Weinberg Angle
- What orbital angular momenta do partons carry?
 - Off-forward parton distributions: a nucleon has different momenta in initial and final state
 - Measurements: certain rare exclusive processes in lepton-nucleon scattering (Deeply Virtual Compton Scattering - an example)
- What is the role of transverse spin in QCD?
 - When nucleons are transversely polarized: partons parallel or anti-parallel to the nucleon spin?
 - Many observed single spin azimuthal asymmetries in e-p and pp scattering, very few understood

Relativistic Heavy Ion Collider

Design Parameters:

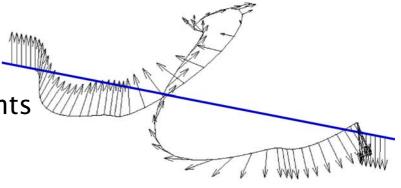
Performance	<u>Au + Au</u>	<u>p+p</u>
√s _{nn}	200 GeV	500 GeV
L [cm ⁻² s ⁻¹]	2 x 10 ²⁶	2 x 10 ³²
Cross-section	7 barns	60 mbarn
Interaction rates	14 kHz	12 MHz


RHIC Capabilities

- ✓ Au + Au collisions at 200 GeV/u
- ✓ p + p collisions up to 500 GeV
 - ✓ 200 GeV tried so far
- ✓ spin polarized protons (70%)
- lots of combinations in species and energy in between

7

RHIC as a polarized p-p collider:



Abhay Deshpande, March 3, 2005

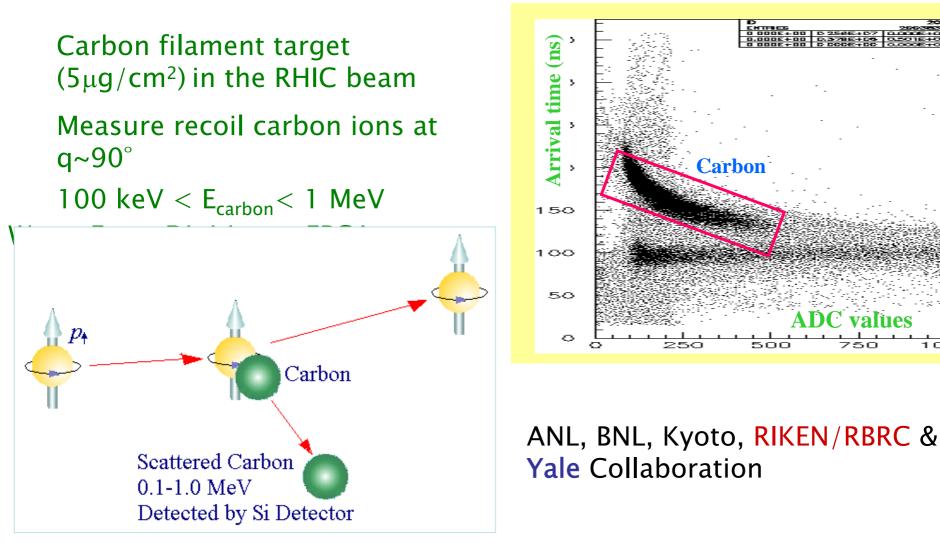
Siberian Snakes at RHIC

(Funded by RIKEN Institute in Japan)

Depolarizing Resonance: Spin tune = no. of spin kicks Imperfection resonances: --magnet errors & mis-alignements Intrinsic resonances: --vertical focusing fields

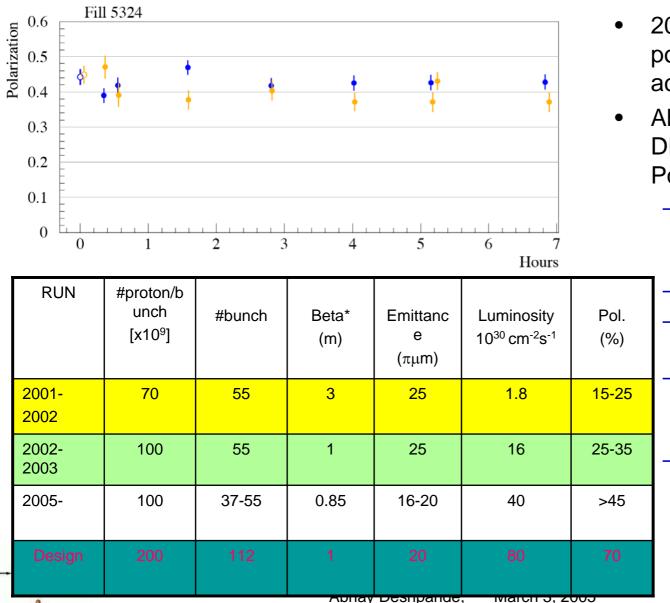
Effect of depolarizing resonances averaged out by rotating spin by large angles on each turn

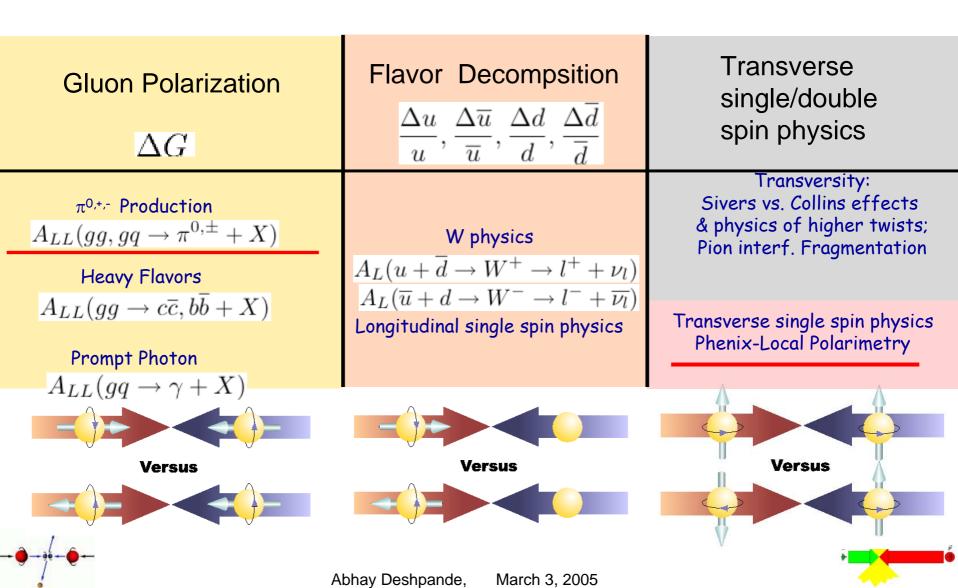
RIKEN/BNL


4 helical dipoles → S. snake
2 snakes in each ring

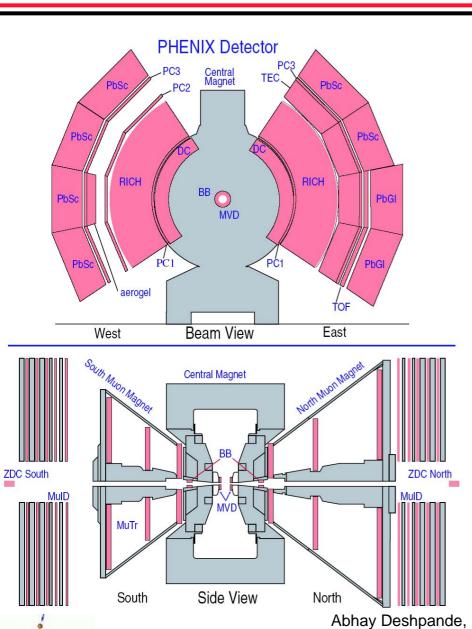
-- axes orthogonal to each other

Proton beam polarimetry (I)


(AGS-E950 Experiment 1999/2000)

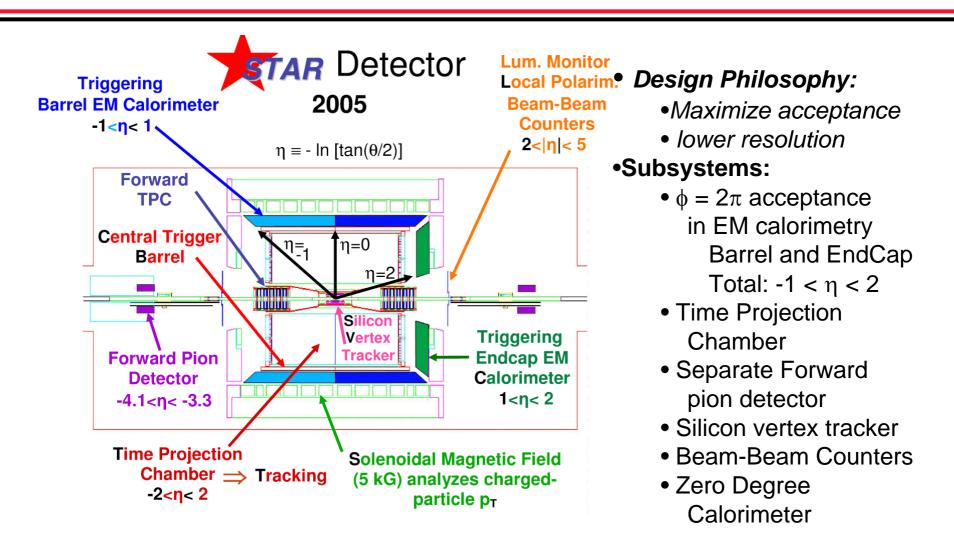

Abhay Deshpande, March 3, 2005

RHIC polarimetry p-C and H-Jet-Target

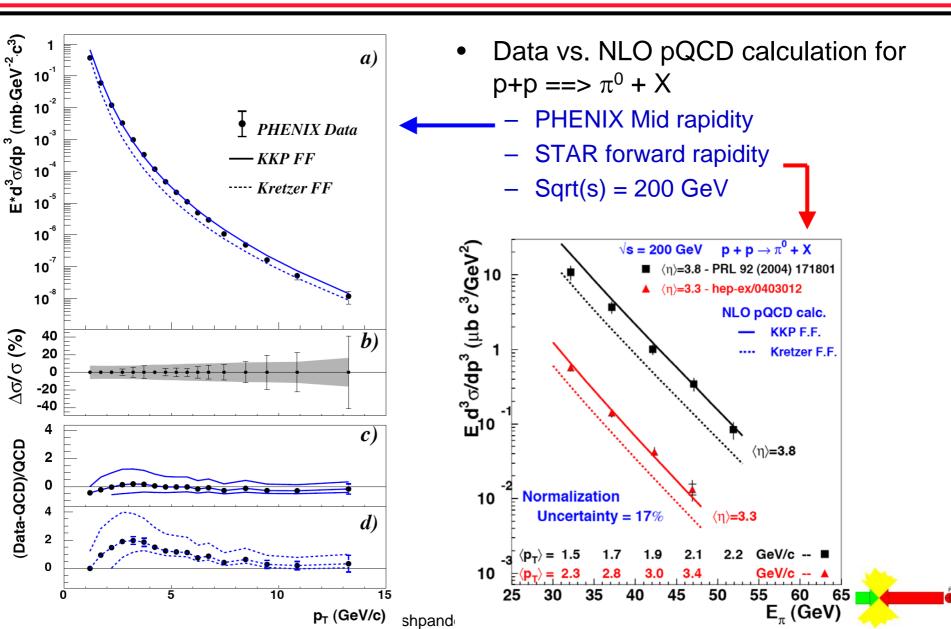


- 2004 ~40-45% beam polarization routinely achieved
- Absolute beam polarization
 DP/P = +/- 0.07 with H-Jet
 Polarimeter
 - Polarized atomic gas jet (92+/-2)% polarization (BR polarimeter)
 - Tgt pol. Reversed/8 min
 - Si detectors for pp elastic scattering: left/right asym
 - Study w.r.t. sign of the tgt polarization flipping each bunch every 200ns
 - Absolute polarization is determined

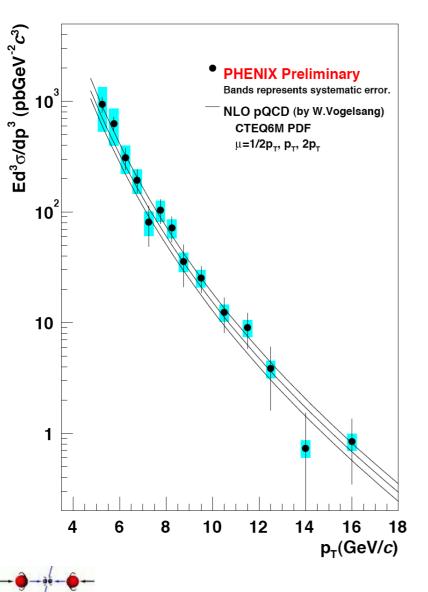
PHENIX Detector at RHIC

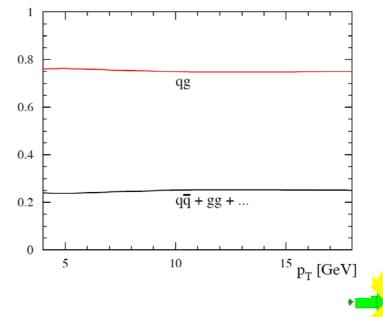


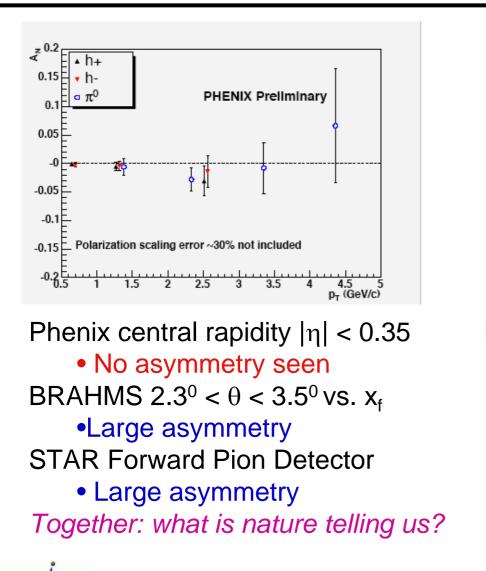
- Design philosophy:
 - High resolution limited acceptance
 - High rate capability DAQ
 - Excellent triggers for rare events
- Central arm
 - Tracking: Drift chambers, pad chambers, time expansion chamber
 - Superb EM Calorimetry PbGl, PbSc
 - $\Delta \phi \ x \ \Delta \eta \ _{\sim} 0.01 \ x \ 0.01 \ at \ 5m \ from beam$
 - π^0 to 2γ resolved up to 25 GeV pT
 - Particle Identification: RICH, TOF
- Forward Muon Arms:
 - Muon tracker, muon identifiers
- Global detectors:
 - Beam beam collision (BBC) counter, Zero Degree Calorimeters (ZDCs)
- Online monitoring, calibration and production

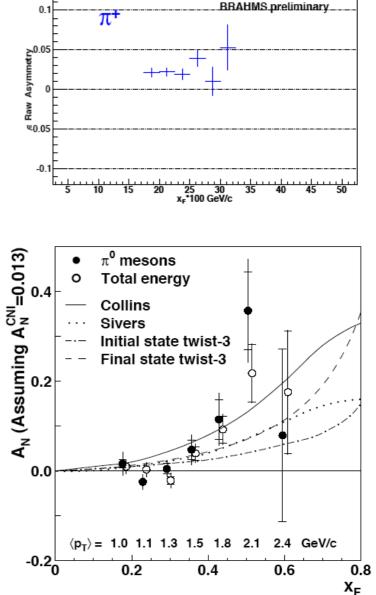

March 3, 2005

STAR Detector at RHIC



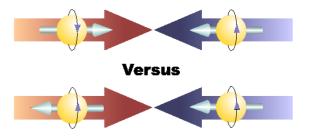

(un-polarized) p+p ==> π^0 +X at RHIC


PHENIX: $p+p ==> \gamma + X$



- Inclusive direct photon (prompt) photon production
- Compared with NLO calculation in pQCD
- The quark gluon process contributes about 75% in this pT range

Single transverse spin asymmetries A_N



Abhay Deshpande,

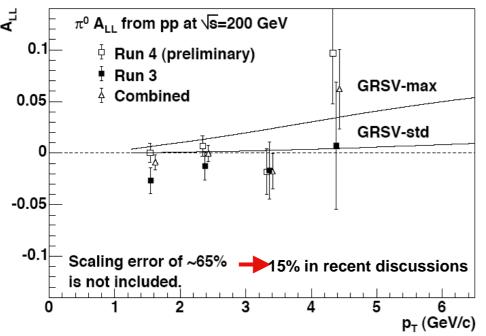
Double spin asymmetry

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{|P_B P_Y|} \frac{N_{++} / L_{++} - N_{+-} / L_{+-}}{N_{++} / L_{++} + N_{+-} / L_{+-}}$$

++ same helicity+- opposite helicity

(P) Polarization -- absolute scale and "longitudinal"ness

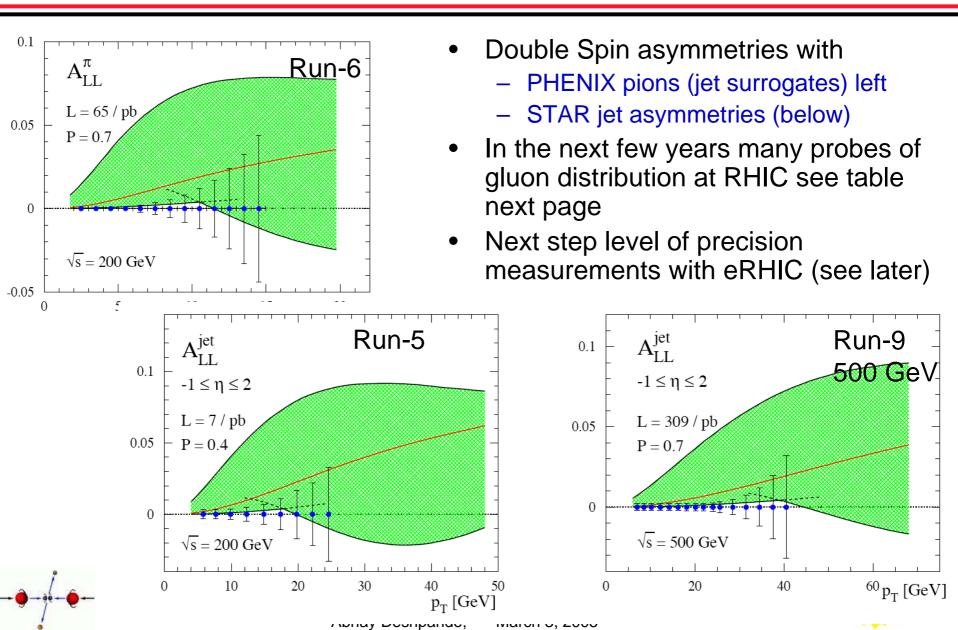
• Local Polarimeter: Longitudinal-ness of proton spins


(L) Relative Luminosity -- bunch to bunch variation

- BBC vs. ZDC vs. (anything else) vs. bunch number
- Bunch crossing every 200 ns
- Studies indicate variations < 2.5 x 10⁻⁴

(N) Number of π^0 s -- triggers and efficiencies etc.

First double spin asymmetry at RHIC



- GRSV: best fits and maximum allowed within the framework of pQCD NLO fits to the world sample of Deep Inelastic Scattering data
- PHENIX vx. Best fit χ²
 confidence level of ~30%

- Data collected over 2 runs
 - Approx. 300 nb⁻¹ data
 - Run 3 polarization 27% (PRL)
 - Run 4 polarization 40% (Spin2004)
- Improvement expected in Run-5
 - Approx. 5 pb-1 data
 - > 45% beam polarization overall expected
 - P⁴L improvement in the figure of merit
- In future charged pion asymmetries will allow to determine the sign of the gluon distribution

Near term future:

RHIC Spin Program: ΔG Measurements

Reaction	Dom. partonic process	probes	LO Feynman diagram	
$\vec{p}\vec{p} \rightarrow \pi + X$ [61, 62]	$\vec{g}\vec{g} \rightarrow gg$ $\vec{q}\vec{g} \rightarrow qg$	Δg	yer e e e e e e e e e e e e e e e e e e	
$\vec{p}\vec{p} \rightarrow \text{jet}(s) + X$ [71, 72]	$ec{g}ec{g} ightarrow gg$ $ec{q}ec{g} ightarrow qg$	Δg	(as above)	
$ \vec{p}\vec{p} \to \gamma + X \vec{p}\vec{p} \to \gamma + \text{jet} + X $	$\begin{array}{c} \vec{q}\vec{g} \to \gamma q \\ \vec{q}\vec{g} \to \gamma q \end{array}$	$\begin{array}{c} \Delta g \\ \Delta g \end{array}$	<u>م</u> لر	
$\vec{p}\vec{p} \rightarrow \gamma\gamma + X$ [67, 73, 74, 75, 76]	$\vec{q}\vec{\vec{q}} \rightarrow \gamma\gamma$	$\Delta q, \Delta \bar{q}$	$\square \widehat{}$	
$\vec{p}\vec{p} \rightarrow DX, BX$ [77]	$\vec{g}\vec{g} \rightarrow c\bar{c}, b\bar{b}$	Δg	Jeee	
$\vec{p}\vec{p} \rightarrow \mu^+\mu^- X$ (Drell-Yan) [78, 79, 80]	$\vec{q}\vec{\bar{q}} \to \gamma^* \to \mu^+\mu^-$	$\Delta q, \Delta \bar{q}$	$\rightarrow \sim \sim$	
$ \begin{array}{c} \vec{p}\vec{p} \rightarrow (Z^0, W^{\pm})X\\ p\vec{p} \rightarrow (Z^0, W^{\pm})X\\ [78] \end{array} $	$ \vec{q} \vec{\bar{q}} \to Z^0, \vec{q}' \vec{\bar{q}} \to W^{\pm} \vec{q}' \vec{q} \to W^{\pm}, q' \vec{\bar{q}} \to W^{\pm} $	$\Delta q, \Delta \bar{q}$	>	

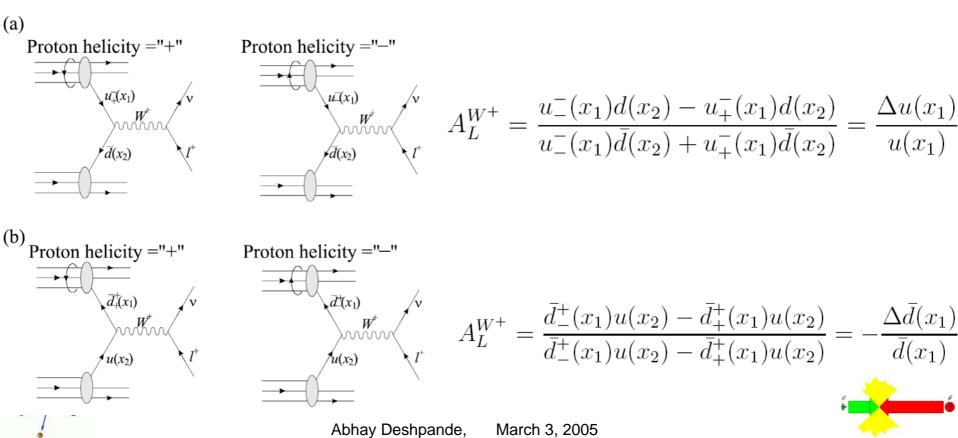
Abhay Deshpande,

March 3, 2005

A Research Plan for Spin Physics at RHIC February 11, 2005; PRELIMINARY

Key processes at RHIC For determining the pdfs of Longitudinally polarized Proton along with the Dominant sub-processes, pdf Predominantly probed, and Representative leading Order Feynmann diagrams.

The references are all NLO Calculations for the particular Sub-process

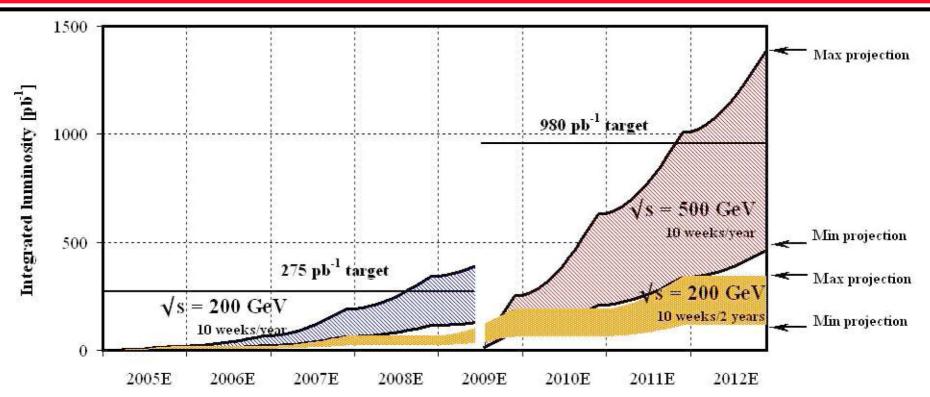

The program will be conducted At 200 GeV and 500 GeV Center of Mass energy

21

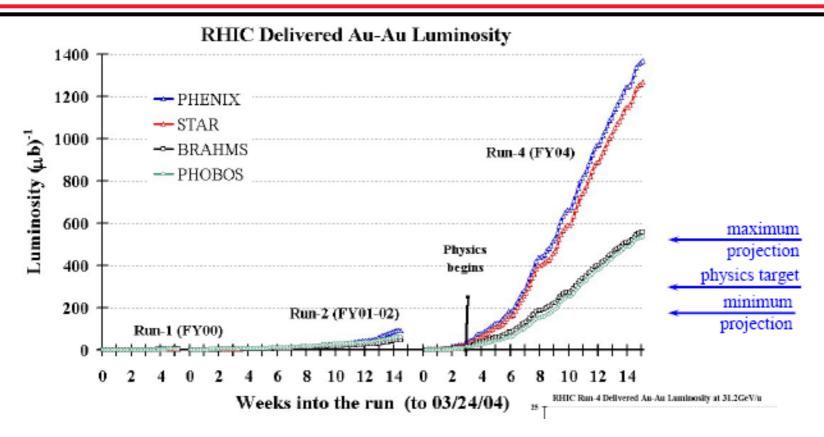
Δq - Δq bar at RHIC via W production

- Single longitudinal scattering asymmetry A_L
- W production dominated by u,ubar, d,dbar quarks with minimal contamination from c,cbar,s,sbar quarks
- W+ implies (u+dbar) and W- implies (ubar+d) at leading order

Flavor separation of u,d,ubar,dbar

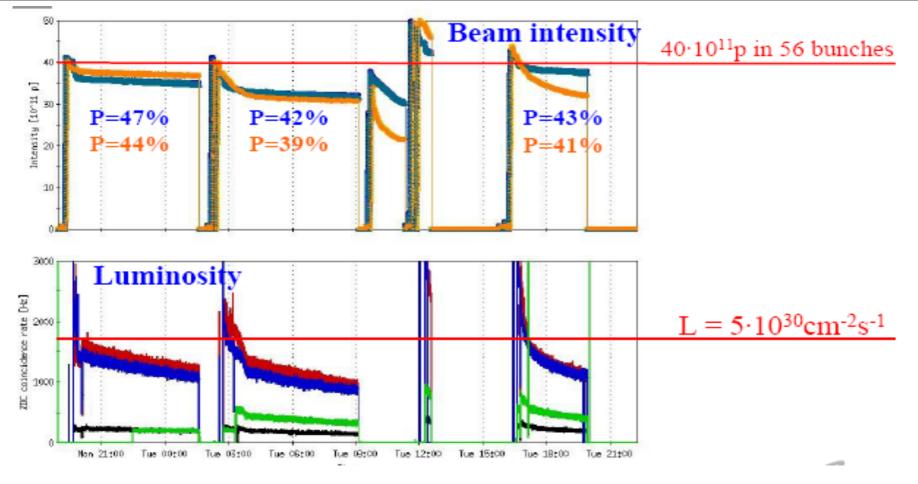


- With 500 GeV Center of Mass
- 800 pb⁻¹ integrated luminosity to tape
- Both PHENIX and STAR will need detector upgrades in the forward region to accomplish this
 - New Group Welcome to Join!
- Blue for W+, Yellow for W-
- Various theoretical expectations shown as curves
 - GS95LO is Gehrmann & Stirling, D53, PRD 1995
 - BS is Bourley and Soffer, B445, NP 1996
- Beyond this, heavy quark vs. antiquark separation at eRHIC (see later in this talk)


de, March 3, 2005

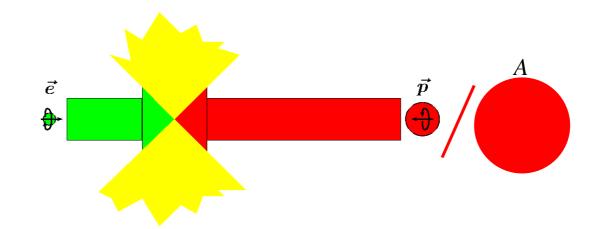
RHIC Delivered Luminosity Projections

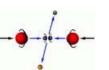
- Assumptions: 10 weeks/year running, tests of 500 GeV in 2005 but physics start in 2008/9 when detector upgrades of W physics would be ready for PHENIX and STAR
 - Delivered luminosity * Vertex distribution within acceptance * Experiment Uptime typically makes "accepted luminosity" by experiments
- A 5 weeks/year scenario ends up completing the program in 2019 hence deemed COMPLETELY UNACCEPABLE


At RHIC no one should doubt the luminosity projections!

- Au-Au design luminosity achieved in the 2nd year of operations
- Au-Au delivered luminosity exceeded by factor 2 routinely during Run-4
- This was not a chance occurance, they repeated this in Run-5 Cu-Cu (currently underway)

And same for polarized p-p collisions


Proton-Proton collision design luminosity exceeded in Run-4 Polarizations of ~40% routinely achieved. Steps to increase polarization to 65%-70% on the way.


Abhay Deshpande, March 3, 2005

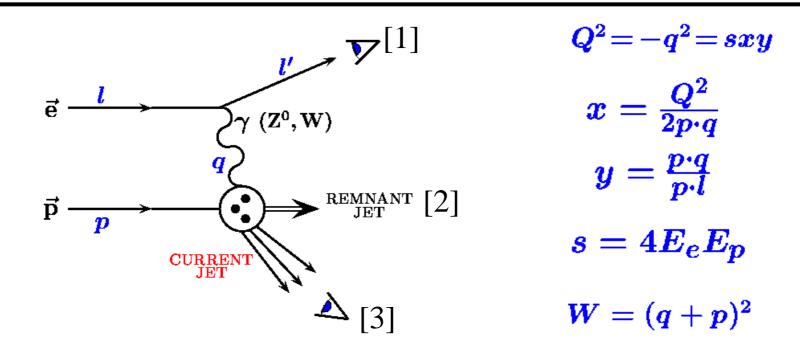
RHIC Physics and "to-disk" data written

Fiscal year	Spin Weeks	CME(GeV)	Р	$L(pb^{-1})$	Remarks
2002	5	200	0.15	0.5	First pol. pp collisions!
					Transverse spin
2003	4	200	0.3	1.6	Spin rotators commissioned,
					first helicity measurements
2004	3	200	0.4	3	New betatron tune developed,
					first jet absolute meas. P
2005	10	200	0.5	14	$A_{LL}(\pi^0, \text{jet}),$
					also 500 GeV studies
2006	10	200	0.7	32	AGS Cold Snake commissioned
					NEG vacuum coating complete
2007	10	200	0.7	88	
2008	10	200	0.7	106	Direct γ
2009	5	200	0.7	35	target complete for 200 GeV;
	5	500	0.7	180	PHENIX μ trig.; W starts
2010	10	500	0.7	266	STAR forward tracker;
					W physics
2011	10	500	0.7	266	
2012	10	500	0.7	266	Completes 500 GeV target
		Abhay Deshp		March 3, 2	

Electron Ion Collider at BNL: eRHIC a longer term perspective

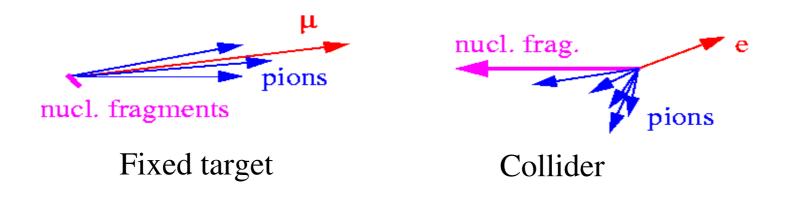
Abhay Deshpande, March 3, 2005

Open questions in QCD


- Do we understand the momentum distribution and spin structure of the nucleon in terms of fundamental quarks and gluons?
- In hard scattering gluons are knocked out but only hadrons are seen.
 Do we understand hadronization in QCD?
- Do we understand the exact roles quarks and gluons play in the microscopic structure of atomic nuclei, the basis for the physical world? What is the exact nature of short range inter-nucleon forces?
- Will we observe a new phenomena predicted by QCD involving saturation of gluons at high energies, similar to the Bose-Einstein condensation in atoms at low temperatures?

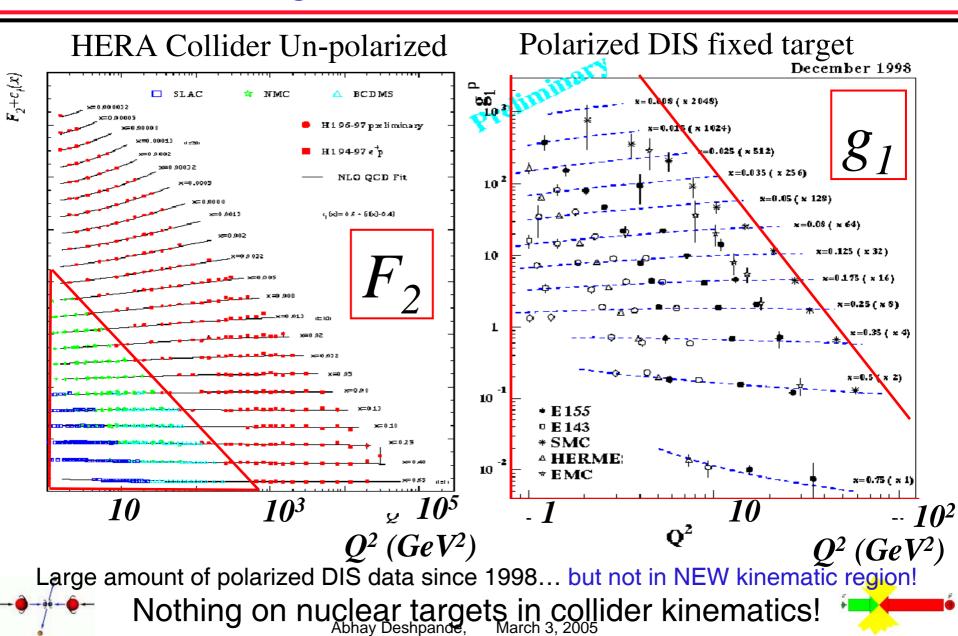
An Electron Ion Collider (EIC) at RHIC/BNL "eRHIC" will try to answer these questions with unprecedented precision and will address the most fundamental and universal aspects of QCD. It is proposed that such a machine be available for physics measurements early next decade.

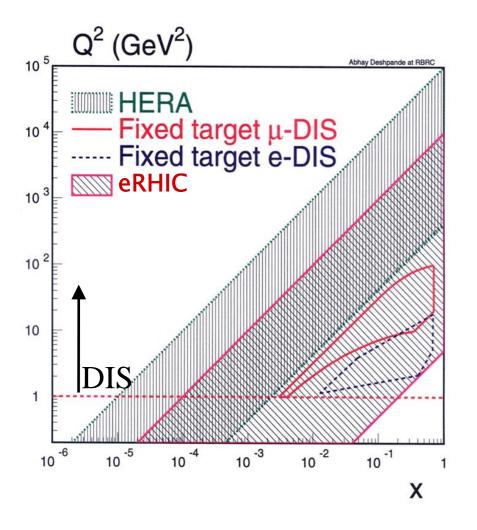
Deep Inelastic Scattering



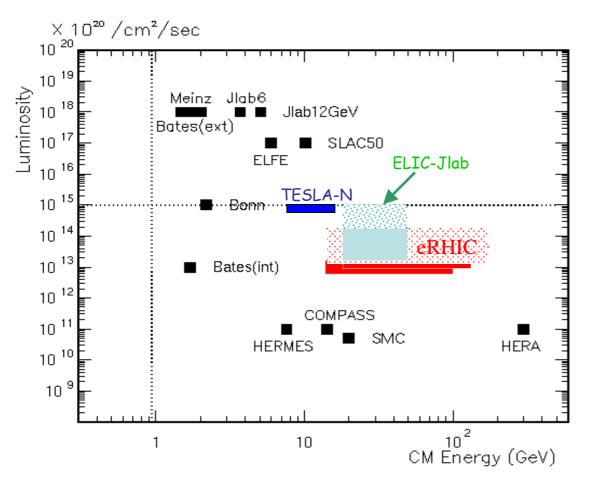
- Observe scattered electron [1] inclusive measurement
- Observe [1] + current jet [2] semi-inclusive measurement
- Observe [1] + [2] + remnant jet [3] exclusive measurement
- Luminosity requirements goes up as we go from [1] --> [2] --> [3]
- Exclusive measurements put demanding requirement on detectors, interaction region and their integration

Why Collider In Future?


- Polarized DIS in past only in fixed target mode
- Collider geometry--> distinct advantages (HERA Experience)


- Higher Center of Mass energies reachable
- Better angular resolution between beam and target fragments
 - Better separation of electromagnetic probe
 - Recognition of rapidity gap events (diffractive physics at HERA)
 - Better measurement of nuclear fragments
- Tricky issues: integration of interaction region and detector

Our Knowledge of Structure Functions


eRHIC vs. Other DIS Facilities

- New kinematic region
- E_e = 10 GeV (5-12 GeV variable)
 20 GeV ``dream-able"
- E_p = 250 GeV (_50-250 GeV variable)
- E_A= 100 GeV/Nucleon
- Sqrt[S_{ep}] = 30-100 GeV
- Kinematic reach of eRHIC:
 - $X = 10^{-4} -> 0.7 (Q^2 > 1 \text{ GeV}^2)$
 - $Q^2 = 0 10^4 \text{ GeV}^2$
- Polarization of e,p and light ion beams at least ~ 70% or better
- Heavy ions of ALL species at RHIC
 - Study of high gluon densities in nuclei
- High Luminosity:
 - L(ep) ~10³³⁻³⁴ cm⁻² sec⁻¹

CM vs. Luminosity

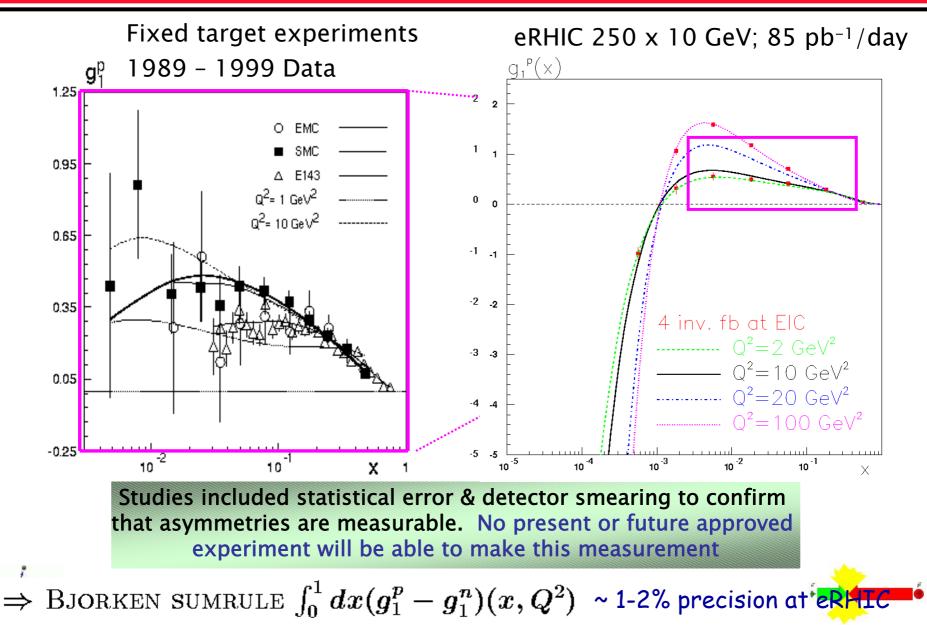
eRHIC at BNL

- Variable beam energy
- P-U ion beams
- Light ion poalrization
- Large luminosity

ELIC at Jlab

- 6 GeV e X 30-100 GeV polarized protons
- Variable beam energy
- Light ion polarization
- 10³⁴ cm⁻² sec⁻¹ luminosity

Scientific Frontiers Open to eRHIC


- Nucleon structure, role of quarks and gluons in the nucleons
 - Un-polarized quark and gluon distributions, confinement in nucleons
 - Polarized quark and gluon distributions (LOWEST POSSIBLE X)
 - Correlations between partons
 - Exclusive processes--> Generalized Parton Distributions
 - Understanding confinement with low x/lowQ² measurements
- Meson Structure:
 - Goldstone bosons and play a fundamental role in QCD
- Nuclear Structure, role of partons in nuclei
 - Confinement in nuclei through comparison e-p/e-A scattering
- Hadronization in nucleons and nuclei & effect of nuclear media
 - How do knocked off partons evolve in to colorless hadrons
- Partonic matter under extreme conditions
 - For various A, compare e-p/e-A

Polarized DIS at eRHIC

	• Spin structure functions g_1 (p,n) at low x , high precision		[1]	
• P	 g₁(p-n): Bjorken Spin sum rule 1-2% accuracy Polarized gluon distribution function ∆G(x,Q²) at least three different experimental methods 			
 S E C >> T C T T F 	 Deeply Virtual Compton Scattering (DVCS), exclusive VM production >> Generalized Parton Distributions (GPDs) Transversity: Single and Double Spin Measurements 		 [1] [1,2] [1] [1,2] [3] [1] [1] [1] [1] 	
	Target/Current fragmentation studies		[2,3]	
•	and many more			
, i-e	 [1]> inclusive, [2]> semi-inclusive [3]> exclusive measurements Abhay Deshpande, March 3, 2005 	Requirem		p ^p

Low x Proton Spin Structure

$\alpha_s(M_z)$ has been determined from Bj spin sum rule by:

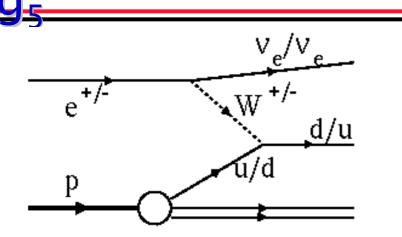
- 1. J. Ellis & M. Karliner, Phys. Lett. B341, 387 (1995)
- 2. G. Altarelli et al., Nucl. Phys. B496, 337 (1997)
- 3. B. Adeva et al. SMC Collaboration, Phys. Rev. D58 (1998) 112002

Values range from 0.114-119 with uncertainties:

+/- 0.004 (experimental)

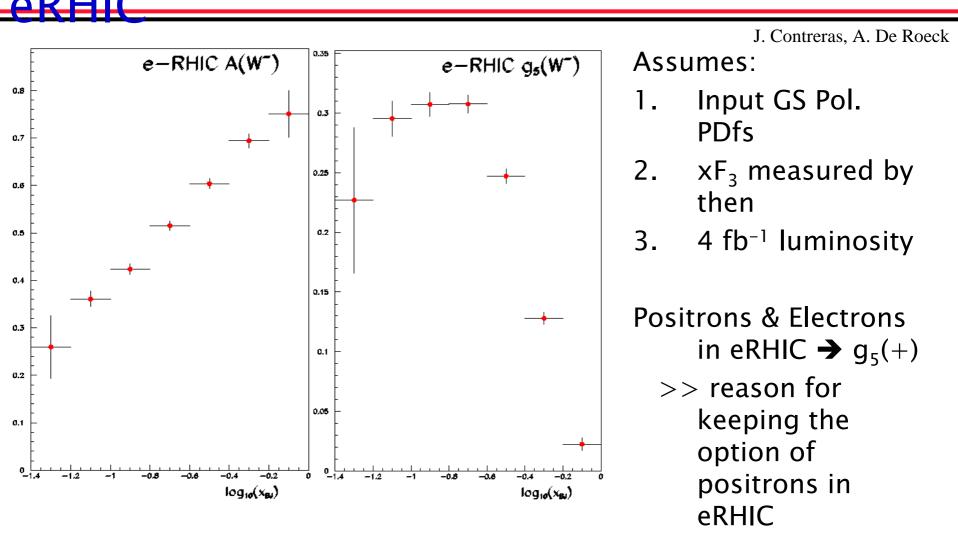
+/- 0.010 (theory/ low x extrapolation)

Particle Data Book (2002), Extended version:

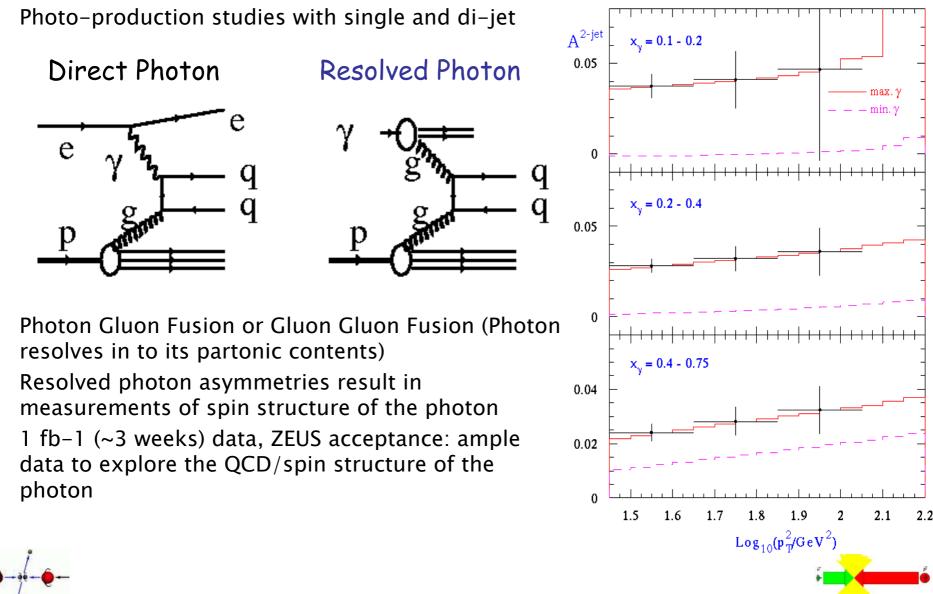

"Theoretically, this sum rule is better for determining α_s because perturbative QCD result is known to higher order ($o(\alpha_s^4)$), and these terms are important at low Q²...... Should data at lower x become available, so that the low x extrapolation is more tightly constrained, the *Bj sum rule method could give the best determination of* α_s "

AD

Parity Violating Structure Function

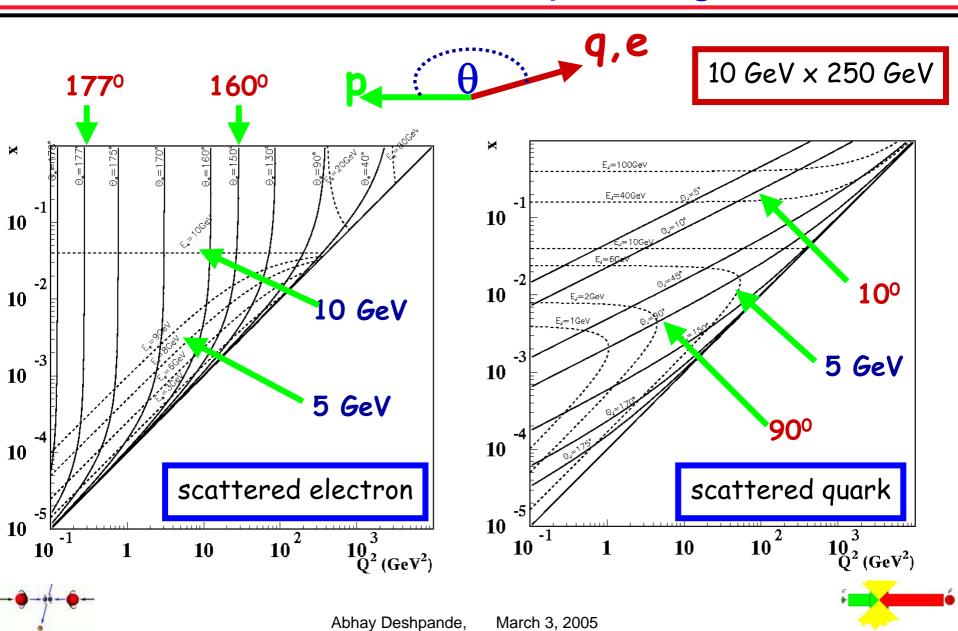

$$egin{aligned} &rac{\mathrm{d}^2\sigma}{\mathrm{d}x\mathrm{d}Q^2}\sim \{a\left[F_1-\lambda bF_3
ight]\!+\!\delta\left[ag_5-\lambda^2 bg_1
ight]\}rac{1}{(Q^2+M_W^2)^2}\ & ext{where}\ &a=2(y^2-2y+2);\ &b=y(2-y);\ &\lambda=\pm 1\ ext{for}\ e^\pm\ &\delta=\pm 1\ ext{for}\ \uparrow\!\downarrow\ ext{and}\ \uparrow\uparrow\ ext{spin}\ ext{oright} ext{oright} ext{invariant} \ &\lambda=\pm 1\ ext{for}\ e^\pm \end{aligned}$$

- Experimental signature is a huge asymmetry in detector (neutrino)
- Unique measurement
- Unpolarized xF₃ measurements at HERA in progress
- Will access heavy quark distribution in polarized DIS

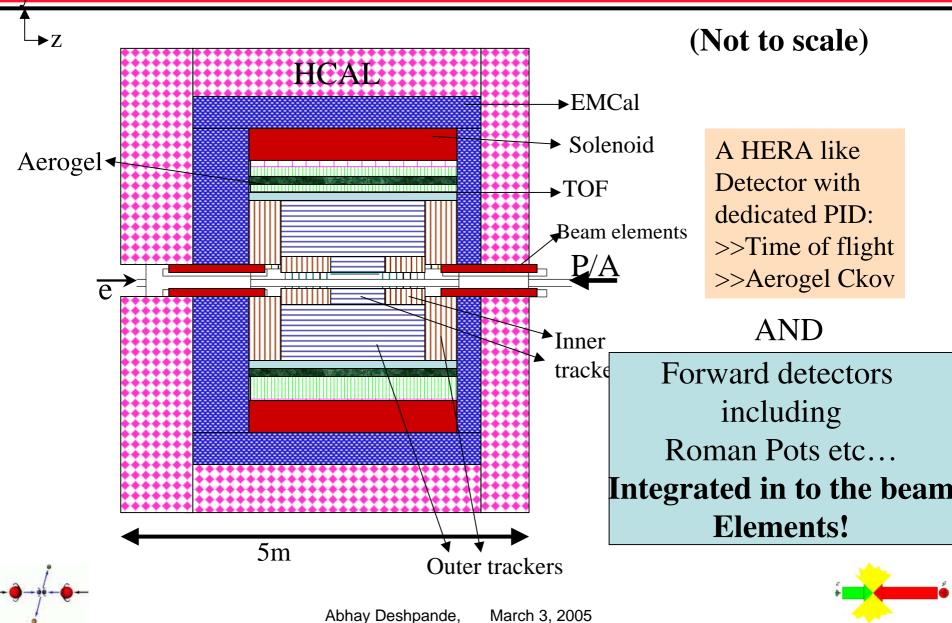

39

Measurement Accuracy PV g₅ at

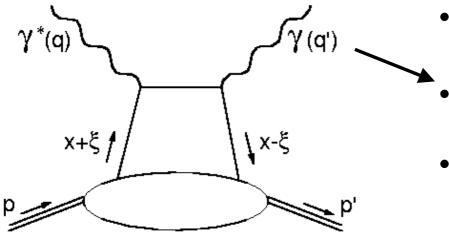
Polarized PDFs of Photons


M. Stratmann, W. Vogelsang

A 4π Detector detector for eRHIC


- Scattered electrons to measure kinematics of DIS
- Scattered electrons at small (~zero degrees) to tag photo production
- Central hadronic final state for kinematics, jet measurements, quark flavor tagging, fragmentation studies, particle ID
- Central hard photon and particle/vector detection (DVCS)
- ~Zero angle photon measurement to control radiative corrections and in e-A physics to tag nuclear de-excitations
- Missing E_T for neutrino final states (W decays)
- Forward tagging for 1) nuclear fragments, 2) diffractive physics
- Lot of experience from HERA... use it!
 - What was good about HERA detectors?
 - What was bad? How/What can we improve?
- eRHIC will provide: 1) Variable beam energies 2) different
 hadronic species, some of them polarization, 3) high luminosity

Where do electrons and quarks go?

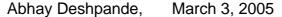


Detector:HERA like...+ PID

B. Surrow, N. Smirnov, AD

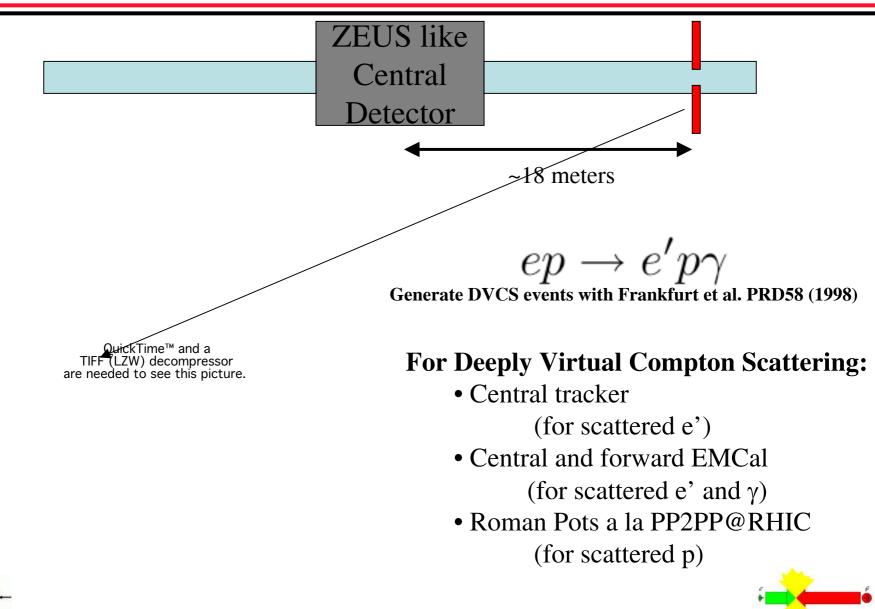
DVCS/Vector Meson Production

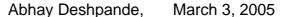
- Hard Exclusive DIS process
- γ (default) but also vector
 mesons possible
- Remove a parton & put another back in!


--A. Sandacz, AD

→ Microsurgery of Baryons!

• Claim: Possible access to skewed or off forward PDFs? Polarized structure: Access to quark orbital angular momentum?


$$\int x dx [H(x,t,\xi) + E(x,t,\xi)] = 2 J_{quark} = \Sigma + 2 L_q$$

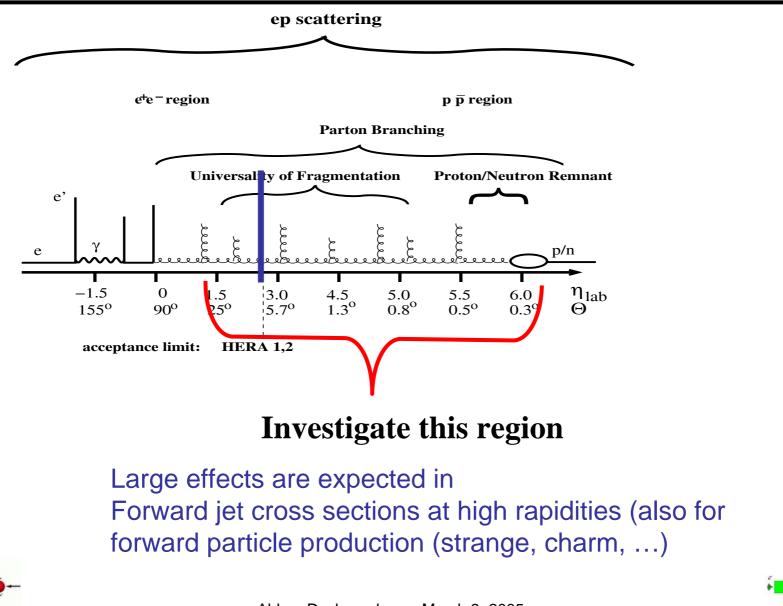

On going theoretical debate... experimental effort just beginning...

Roman Pots for eRHIC

A. Sandacz, AD

Recent interest in eRHIC from HERA-users

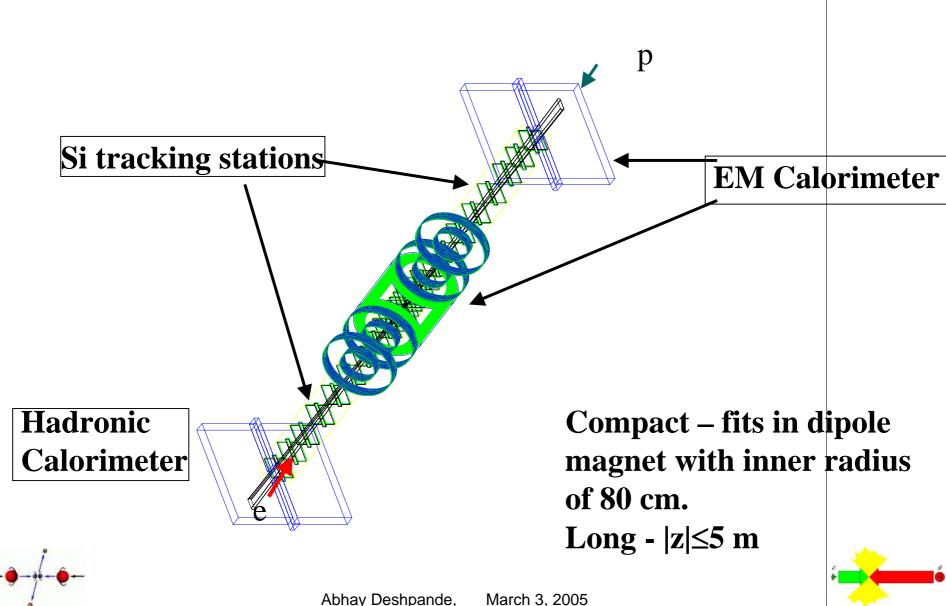
- Latest from HERA-III: probably no prospects for any Phyiscs beyond 2007
- Physics of strong interaction, main motivation for HERA-III
 - Understanding the radiation processes in QCD at small and large distances:
 - Small distance scales: explores parton splitting (DGLAP, BFKL, CCFM...)
 - Large distance scales: transition from pQCD to non-pQCD regime
- Needs specially designed detector to look in to very very forward directions, unprecedented so far at HERA
- Early indications are that eRHIC energies would be sufficient to study this physics... if a specially designed detector is installed in eRHIC
- A. Caldwell, I. Abt et al from MPI Munich have led this study and may plan submit a Letter of Intent at the appropriate time.



47

A detailed study of radiation in QCD:

forward jets

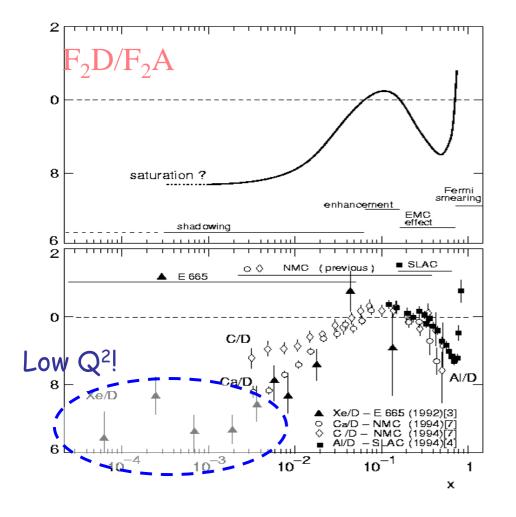

A. Caldwell et al.

Abhay Deshpande, March 3, 2005

A new detector to study strong interaction physics

A Caldwell et al.

Highlights of e-A Physics at eRHIC

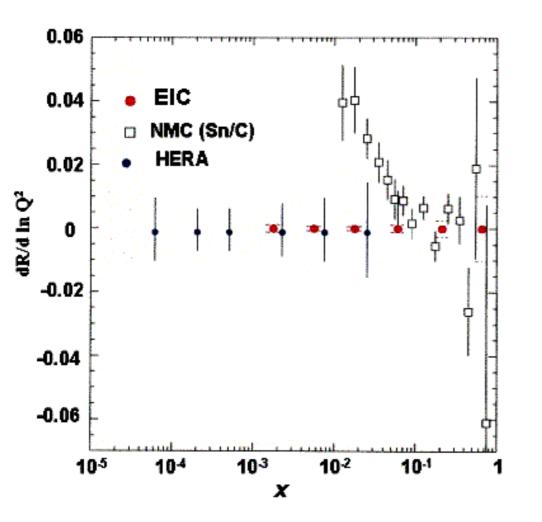

- Study of e-A physics in Collider mode for the first time
- QCD in a different environment
- Clarify & reinforce physics studied so far in fixed target e-A & µ-A experiments including target fragmentation
 QCD in: x > [1/(2m_NR_N)] ~ 0.1 (high x)
 QCD in: [1/(2m_NR_A)] < x < [1/(2m_NR_N)] ~ 0.1 (medium x)
 Quark/Gluon shadowing
 Nuclear medium dependence of hadronization
 - And extend in to a very low x region to explore: saturation effects or high density partonic matter also called the Color Glass Condensate (CGC) QCD in: $x < [1/(2m_NR_A)] \sim 0.01$ (low x)

Already hints of exciting physics in this from: HERA, RHIC d-A; if true, eRHIC will do a precision measurements in this regime

DIS in Nuclei is Different!

51

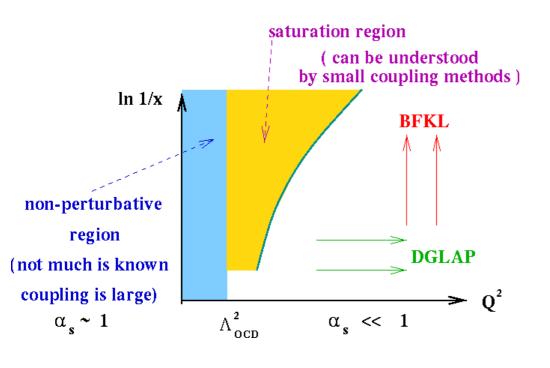
Regions of:


- Fermi smearing
- EMC effect
- Enhancement
- Shadowing
- Saturation?

Regions of shadowing and saturation mostly around Q² ~1 GeV²

An e-A collision at eRHIC can be at significantly higher Q²

T. Sloan, eRHIC WP 2002


Statistical Precision at eRHIC for e-A

- High precision at EIC shown statistical errors for 1 pb⁻¹
- Recall: eRHIC will ~85 pb⁻
 ¹ per day
- NMC data F₂(Sn/D)
- EIC's Q² range between 1 and 10 GeV²
- Will explore saturation region!

The Saturation Region...

- As parton densities grow, standard pQCD break down.
- Even though coupling is weak, physics may be non-perturbative due to high field strengths generated by large number of partons.
- A new state of matter???

An e-A collider/detector experiment with high luminosity and capability to have different species of nuclei in the same detector would be ideal... \rightarrow Low x --> Need the eRHIC at BNL

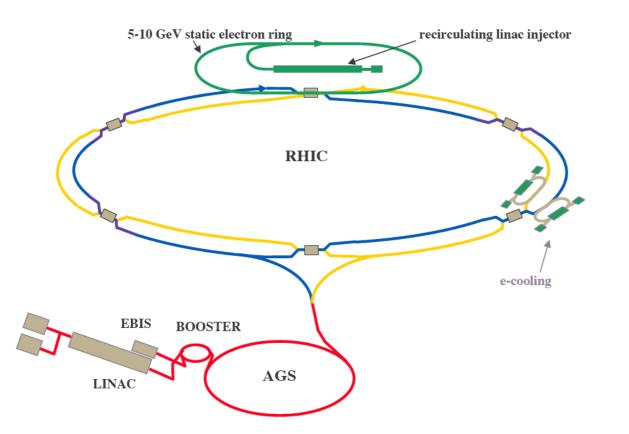
A Color Glass Condensate?

E. Iancu, L. McLerran, R. Venugopalan, et a

- At small x, partons are rapidly fluctuating gluons interacting weakly with each other, but still strongly coupled to the high x parton color charges which act as random static sources of COLOR charge
 - Analogous to spin GLASS systems in condensed matter: a disordered spin state coupled to random magnetic impurities
- Gluon occupation number large; being bosons they can occupy the same state to form a CONDENSATE
 - Bose Einstein condensate leads to a huge over population of ground states
- A new "state matter" (??): Color Glass Condensate (CGC) at high energy density would display dramatically different, yet simple properties of glassy condensates

Signatures of Color Glass Condensate (I)

- Measure structure functions and their slopes F_2 , dF_2 /lnQ², dF_2 /dlnx
 - $dF_2/dlnQ^2$ at fixed x is the gluon distribution
 - CGC theory and conventional QCD predict very different behavior
 - We will need to make precise gluon distribution measurements of nuclei using photon-gluon fusion in nuclei (di-Jet events)
 - Data with eRHIC luminosities and systematic uncertainties at the order of those achieved at HERA would easily differentiate between the different scenarios
- Longitudinal structure function $F_L = F_2 2xF_1$
 - Provides an independent measurement of gluon density
 - Beam energy variability built in to the machine (with minimal loss of luminosity or polarization)
- Measurement of nuclear shadowing
 - F_2^A/AF_2^N Quark shadowing observed before
 - G^A/AG^N Gluon shadowing has been observed indirectly (pQCD analysis at NLO)
 - May be observed in the extremely low x and moderate Q² kinematic region accessible with eRHIC



Signatures of CGC (II)

- CGC relates shadowing and diffraction very differently than conventional pQCD
 - eRHIC would be a natural place to study this as a function of A, nuclear size
- Large rapidity gap events caused by hard diffraction
 - Large rapidity gap between current and target fragments a sign of diffractive events. At HERA they were of the order of 7% of total cross section. CGC predicts in nuclei they should be as large as 30-40%. This would be easily measurable, systematically, as a function of A
- Coherent inclusive vector meson production
 - Light vector meson production diffractive cross section $_{2}50\%$
 - Heavy vector meson diffractive cross section decreases with the vector meson mass and eventually goes to 1/lnQ2
 - eRHIC will produce and study this in abundance with production of $\rho, \omega, \phi, J/\psi$

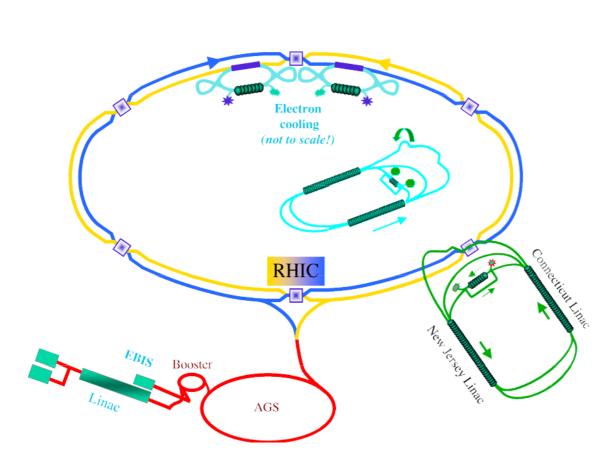
The eRHIC Ring-Ring Lay Out

- Full energy injection
- Polarized e- source & unpolarized e+ --> (polarization via synchrotron radiation)
- 10 GeV main design but up to 5 GeV reduction possible with minimal polarization loss
- Fill in bunch spacing 35ns
- See eRHIC ZDR for more details

Plus Points: Bo N Minus Points: M

Both positrons/electrons positrons..... Most advanced in technical feasibility Multiple detectors or/and Interaction Regions? Abhay Deshpande, March 3, 2005 QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.


QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. eRHIC:
•Zeroth Design Report
•April 04
•Review May'05

÷

58

eRHIC: Linac-Ring Option

Features:

- Up to L(ep) ~10³⁴ cm⁻²sec ⁻¹
- Polarization transparency at all energies
- Multiple IRs and detectors
 - 1 low 1 high lumi/pol
- Long element free regions (+/-5-7 m)
- Full range of CM Energies without loss of polarization & luminosities
- Future upgrades to 20 GeV straightforward

Limitations:

Positron beams not possible Physics implications? Time to get on mass shell longer

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

> Up to 4 Irs Up to 20 GeV Electron beams

Abhay Deshpande, March 3, 2005

eRHIC Status & Design Ideas

61

- 2001 LRP: NSAC enthusiastically supported R&D and stated its would be the next major for nuclear physics (after 12 GeV Jlab upgrade)
- 2003 NSAC subcommittee's high recommendation
 - Level 1 for physics, and level 2 for readiness
- 2003 One of the 28 "must-do" projects in the next 20 yrs of the DoE list
- BNL Management Requested a Zeroth Design Report (ZDR)
 - What can be done with minimal R&D and shortest time scale?
 - eRHIC: Ring-Ring design (presently: "main design line")
 - Identify parameters for enhanced machine parameters with identified R&D topics toward significant luminosity enhancement
 - eRHIC: Ring-Ring design enhancement
 - eRHIC: Linac-Ring design
 - BNL-MIT-Budker-DESY collaboration: ZDR ready April 2004
 - Includes a preliminary but realistic Cost Estimates
 - Review planned in near future (May 2005)
- Development on both projects ring-ring & linac-ring will continue in future until the time to make the decisions to freeze technology and design option
- Technical Feasibility to start construction evaluated to be 2009/2010.

Many involved, but room for many more!

• eRHIC steering committee:

- A. Caldwell (Munich, MPI), <u>A. Deshpande (Stony Brook/RBRC</u>), R. Ent (Jlab), G. Garvey (LANL), R. Holt (Argonne), E. Hughes (Caltech), K. Imai (Kyoto), R. Milner (MIT), P. Paul (SBU), J.C.Peng (UIUC), S. Vigdor (Indiana)
- The eRHIC Accelerator Group: BNL, MIT/Bates, DESY, PNPI
 - Accelerator ZDR: Ed. V. Ptitsyn (BNL), M. Farkondeh (MIT/Bates)

and _40 other collaborators... from MIT, BNL, DESY, Jlab, and PNPI

- Monte Carlo Simulation & Detector Group (meets every 3-4 months)
 - A. Bruell (Jlab), A.D.(Stony Brook), R. Ent (Jlab), E. Kinney (Colorado), N. Makins (UIUC), C. Montag (BNL), E. Sichtermann(LBL), B. Surrow (MIT)
 - (also pursue studies for ELIC at Jlab (lower sqrt(s) higher luminosity))
 - AND "eRHIC Collaboration:" ~100 or so people who contributed to the Whitepaper 2001/2
- Extremely Supportive Theorists:
 - L. McLerran (BNL), R. Venugopalan (BNL), W. Vogelsang (BNL), D. Kharzeev (BNL), M. Stratmann (Regensburg), M. Strikmann(PSU), X. Ji (Maryland), S.Kretzer (BNL), M. Diehl (DESY), and many others!

Concluding thoughts (I)

- The case for a future ep/eA collider is very strong already and is being continuously improved
- eRHIC at BNL, ZDR is now ready; will seek approval from NSAC in the next LRP (2006/7) and prepare the CD0
- eRHIC promises to be a truly next generation collider facility
 - Accelerator, Interaction Region and detector ideas being developed simultaneously with other in mind
 - Many technical challenges need to solved, but none is deemed impossible
 - Help, advice and collaboration from the experienced HERA community is critical we are determined to accept
- We hope that the DIS collider seeking communities join forces now to realize this chance of a future collider(s) for QCD studies

Concluding thougths (II)

- It is critical for those communities interested in eRHIC get behind it quickly and make their physics interest and willingness to take collaborative responsibilities known to US DOE and BNL management
 - Our responses and interests become their initiatives!
 - We ought to pursue an accelerated path to eRHIC realization
- Early initiative of eRHIC is not only good for those want it, but is essential for the field
 - No significant university and laboratory based groups can sustain themselves in high level of intellectual activity unless there is continuity.
 - The natural time line of eRHIC are perceived so far conforms to all these
- All eyes should be on the next long range planning activity of the Nuclear Science Advisory Committee (NSAC) of the US DOE 2006/7

http://www.bnl.gov/eic --> register email eic/news servers

