

Nucleon knockout reactions with heavy nuclei

Edward Simpson University of Surrey

Brighton PRESPEC Meeting 12th January 2011

Nucleon knockout reactions

Removal of nucleons from a (secondary radioactive) beam at energies >80 MeV/nucleon on a light nuclear target (Be, Carbon)

Halos: ¹⁵C, ¹⁹C, ²⁷P, ³¹Ne Magic numbers: ²⁴O, ⁴²Si Exotic *R*_s: ²³Al, ²³Si, ²⁷P, ²⁷S

Absolute cross sections

- Cross section proportional to spectroscopic strength
- Suppression of spectroscopic strengths in asymmetric systems

beam • Orbital angular momentum –

final state spins, evolution of shell ordering

Momentum distributions

 Width increases with nucleon binding energy

Hansen et al., Annu. Rev. Nucl. Part. Sci. <u>53</u>, 219 (2003)

Knockout in heavy nuclei

Two-nucleon knockout

- Oxbash TNA using *khhe* interaction in proton $[2s_{1/2}, 1d_{3/2}, 0h_{11/2}, 1d_{5/2}, 0g_{7/2}]$ model space, final state spin defined by valence nucleons: $j_1+j_2=J$
- Woods-Saxon radial wave functions, constrained by HF r.m.s. radii
- Optical-limit elastic S-matrices, density folding model, (HF calculations, reaction cross sections)

PRC <u>70</u>, 064602 (2004); PRC <u>74</u>, 064604 (2006); EPJ ST <u>150</u> 67 (2007)

Residue momentum distributions

[PRL <u>102</u>, 132502 (2009); PRC <u>79</u>, 064621 (2009)]

²⁰⁸Pb(-2p) [0h_{11/2}]² Distribution

Ē

Sensitivity to underlying structure

²⁰⁸Pb(-2p): RISING Isomer Decay

Many states are expected to be populated, with $\sigma \sim 0.1$ mb.

Density of states much higher than in light nuclei.

Most states unobserved isomer decay only

PRC <u>65</u>, 064604 (2001); PRL <u>87</u>, 212501 (2001)

²⁰⁸Pb(-2p): Isomeric ratios

Reasonable agreement once feeding is included

- Unobserved feeding?
- Cuts on momentum, affects high-spin states?

 $R_{I} = \frac{\sigma_{I}}{\sigma_{T}} = \frac{\int dK_{A} \sigma_{I}(K_{A})}{\int dK_{A} \sigma_{T}(K_{A})}$ $\sigma(K_A) \equiv \frac{d\sigma}{dK_A}$

Isomeric state	Isomeric ratio, R ₁ (%)
5 ⁻ (exp)	21.9(+1.2,-2.9)
5 ⁻ (theory)	4.8
5 ⁻ (theory: 5 ⁻ , 7 ⁻ , 8 ⁺ , 10 ⁺)	18.8 [Unobserved feeding?]
10+ (exp)	3.1(+1.0,-1.2)
10 ⁺ (theory)	4.7 [Differential cutting by slit?]

PRC <u>78</u>, 061302 (2008); Int. J. Mod. Phys. E <u>18</u>, 1002 (2008); PRC <u>80</u>, 064608 (2009)

²⁰⁶Hg differential isomeric ratios

Conclusions/Further work

- Full exploitation of the mechanism requires prompt gamma rays...
- ... and ideally final state exclusive residue momentum distributions
- Tests of mechanism single nucleon knockout (using thin target) e.g. ²⁰⁸Pb(-1p) --> ²⁰⁷TI, secondary reactions with "isomeric" beam?
- Deformed nuclei requires theoretical development, structure and reaction dynamics

²⁰⁸Pb(-1p): test case?

Isomer: 1.33 s proton [Oh_{11/2}]⁻¹ hole state at 1.348 MeV
Simple: five proton-hole states populated
Large cross section (~10s of mb)
Thin target: sensitivity of isomeric ratio to momentum

Acknowledgements

J. A. Tostevin, P. H. Regan Zs. Podolyak, S. J. Steer

UK STFC Grants EP/D003628 and ST/F012012 UK EPSRC Grant EP/P503892/1

