Isomers and shape transitions in the n-rich A~190 region: the influence of angular momentum

Phil Walker
University of Surrey

prolate K isomers vs. oblate collective rotation

adapted from Walker and Dracoulis, Nature 399 (1999) 35

prolate-oblate shape transition

n-rich hafnium ground states

Robledo et al., J. Phys. G: Nucl. Part. Phys. 36, 115104 (2009).

R. R. Hilton and H. J. Mang
Physik-Department, Technische Universität München, D-8046 Garching, Germany (Received 6 September 1979)

Giant backbending is predicted to occur in ${ }^{180} \mathrm{Hf}$ at $J \approx 26 \hbar$. The effect is clearly seen to be the result of the crossing of two bands with very different intrinsic structure.

${ }^{180} \mathrm{Hf}$ oblate band?

pre-Gammasphere high-K yrast isomers:
d'Alarcao et al., Phys. Rev. C59 (1999) 1227(R)

cranked n-rich hafnium: 3 well-deformed minima

${ }^{182} \mathrm{Hf}$ example: Xu, Walker and Wyss, Phys. Rev. C62 (2000) 014301

beyond the critical point
$\mathrm{Y}=\beta_{2} \sin \left(\gamma+30^{\circ}\right)$

[Xu et al., Phys. Rev. C62 (2000) 014301]

Nilsson single-particle diagram $\bigcirc \mathrm{N}=116\left({ }^{188} \mathrm{Hf},{ }^{190} \mathrm{~W},{ }^{192} \mathrm{Os}\right)$

data for even-even A~190 nuclei

| $\mathrm{N}=110$ | 112 | 114 | 116 |
| :--- | :--- | :--- | :--- | :--- |

${ }^{186} \mathrm{Os}$ 7- 8ns	$\begin{aligned} & { }^{188} \mathrm{Os} \\ & 7^{-} \quad 14 \mathrm{~ns} \end{aligned}$	$\begin{aligned} & { }^{190} \mathrm{Os} \\ & 10^{-} \quad 10 \mathrm{~m} \end{aligned}$	$\begin{aligned} & { }^{192} \mathrm{Os} \\ & 10^{-} \quad 6 \mathrm{~s} \end{aligned}$
$\begin{array}{ll} 184 \\ 15 & 0.2 \mu \mathrm{~s} \\ 5^{-} & 8 \mu \mathrm{~s} \end{array}$	$\begin{aligned} & { }^{186} \mathrm{~W} \\ & 16^{+}>3 \mathrm{~ms} \\ & 7^{-} \quad 20 \mu \mathrm{~s} \end{aligned}$	${ }^{188} \mathrm{~W}$	$\begin{aligned} & { }^{190} \mathrm{~W} \\ & 10^{-} \sim 1 \mathrm{~ms} \\ & \hline \end{aligned}$
$$	$\begin{array}{\|l\|} \hline{ }^{184} \mathrm{Hf} \\ \text { new data } \\ 8^{-} \quad 48 \mathrm{~s} \end{array}$	${ }^{186} \mathrm{Hf}$ new data	${ }^{188} \mathrm{Hf}$

critical point

Zs. Podolyák et al. / Physics Letters B 491 (2000) 225-231
delayed gamma rays from ${ }^{208} \mathrm{~Pb}$ fragmentation at 1 GeV per nucleon

isomer energies, potential energy surfaces (keV)
${ }^{190} \mathrm{~W}:$ prolate
[Walker and Xu, PLB636 (2006) 286]

${ }^{190} \mathrm{~W}$ with Gammasphere

Lane et al., Phys. Rev. C82
(2010) 051304

${ }^{190}$ W with Gammasphere

isomer energies, potential energy surfaces (keV)

${ }^{190}$ W: prolate

${ }^{190} \mathrm{~W}$ with Gammasphere

${ }^{190}$ W with Gammasphere

${ }^{190}$ W TRS: prolate to oblate

rotation alignment of $2 i_{13 / 2}$ neutrons with oblate shape

[Walker and Xu, PLB636 (2006) 286]
$\mathrm{N}=116$ experimental energies, spins and half-lives
$?$
200 ns $\frac{2451}{9 \mathrm{~ns}} \quad \frac{2439}{5 \mathrm{~ns}} \quad 12^{+}$

projected shell model
 (angular momentum basis)

Sun et al., PLB659 (2008) 165

summary

- oblate-prolate competition in $\mathrm{N}=116{ }^{188} \mathrm{Hf}-{ }^{190} \mathrm{~W}$ - ${ }^{192} \mathrm{Os}$
- $N=116$ seems to be the critical-point neutron number
- focus on angular momentum effects
- 10 prolate K isomers
- 12^{+}isomers: bandheads of collective oblate bands??
- giant backbending candidates: cf. Hilton and Mang 1979
- oblate rotation becomes yrast over a wide spin range
- more data needed!! (${ }^{188} \mathrm{Hf},{ }^{190} \mathrm{~W}$ and/or ${ }^{192} \mathrm{Os}$)

