Search for Proton Radioactivity in the Trans-lead and Sub-tin Regions Zhong Liu University of Edinburgh On behalf of the AIDA Collaboration (Edinburgh, Liverpool, STFC DL, RAL)

Outline

- Status of the AIDA detector
- Overview of the g.s. proton radioactivity
- Search for p-emitters in the trans-lead region (submitted to GPAC)
- Search for p-emitters in the sub-tin region

AIDA: status

- Systems integrated prototypes available
 - prototype tested on the MARS @ Texas A&M,
 - some modifications made
- Production submitted in Q3/2010 Mezzanine:
 - FEE:
- 4x 16 channel ASICs Cu cover EMI/RFI/light screen cooling
- 4x 16-bit ADC MUX readout (*not visible*) 8x octal 50MSPS 14-bit ADCs Xilinx Virtex 5 FPGA PowerPC 40x CPU core – Linux OS

FEE width: 8cm Prototype – air cooling Production – recirculating coolant Gbit ethernet, clock, JTAG ports Power

Prototype AIDA Enclosure

- Prototype mechanical design
- Based on 8cm x 8cm DSSSD
 - evaluate prior to design for 24cm x 8cm DSSSD
- Compatible with RISING, TAS, 4π neutron detector

- 12x 8cm x 8cm DSSSDs 24x AIDA FEE cards
- 3072 channels
- Design complete
- Mechanical assembly in progress

In –beam test on the FRS approved (S390) Hope to be scheduled in the 2nd half of 2011

Overview of the proton radioactivity

Proton radioactivity provides information on

wavefunction deformation

Z = 53 - 83 (except Z = 61)

to extend these studies to the translead and sub-tin regions

2–5 mass units from the lightest known isotopes.

Production and yield

production cross-section from the fragmentation of the 1A GeV 238U

Spectroscopy in the p-rich trans-lead and sub-uranium							
region							
proton drip-line lightest known isotope p-emitter							
18	9BI,		185BI				
19:	5At,	191At	189At				
ED 20	1Fr,	199Fr	197Fr,				
20	7Ac	206Ac	203Ac				
21.	3Pa.	212Pa	207Pa				

2–5 mass units from the lightest known isotopes.

 WKB half-life estimations for Qp = 1.5 MeV, Z = 89

 Configurations

 203Ac
 g.s. 7/2-, l = 3

 2nd min., 5/2-, l = 3

 197Fr
 g.s. 11/2+, l = 6

 2nd min., 5/2+, l = 2

l	t _{1/2}
0	100 µs
1	1.3 ms
2	4 ms
3	30 ms
4	300 ms
5	5 s

Proton Radioactivity Candidates Below ¹⁰⁰Sn

A/Q

Qp and T_{1/2} for ⁹⁷In, ⁹³Ag and ⁸⁹Rh

with $T_{1/2} > 0.2 \ \mu s$ and L=4 transitions

we get (using Delion et al. PRL96(2006)) the Q_p values:

	our limit	Lalazissis et al.	Herndl, Brown	Audi et al.
		NPA 679 (2001)	NPA 627 (1997)	NPA 729 (2003)
		rel. H B	shell model	extrapolation
⁹³ Ag	< 1.1MeV	0.11	0.95	1.43(78)
⁹⁷ In	< 1.2MeV	0.37	1.28	1.81(78)

89Rh : reasonably good candidateAudi et al; Brown et al; Moller et al;Qp 700(200) keV 640 Kev 500 keVT1/2p 300µs 8 ms 5s (bp~2%) : beta dominateMeasurable half-life range0.5 µs < t/1/2 < 100 ms93Ag 1.02 MeV > Qp > 0.65 MeV89Rh 0.94 MeV > Qp > 0.60 MeV

Production and yield

WKB half-life estimations for Qp = 1.5 MeV, Z = 89

l	t _{1/2}
0	100 µs
1	1.3 ms
2	4 ms
3	30 ms
4	300 ms
5	5 s

Configurations

EDINS

²⁰³Ac

g.s. 7/2⁻, *I* = 3 2nd min., 5/2⁻, *I* = 3

¹⁹⁷**Fr**

g.s. 11/2+, *I* = 6 2nd min., 5/2+ , *I* = 2

Search for p-emitter in the sub-uranium region

p-radioactivity studies have been conducted swathe of the proton dripline,

50<Z<82: g.s. and low-lying isomer

Z<50: high-lying, high-spin isomer 53mCo 19/2-54mNi: 10+ 94mAg (21+) 2p decays 45Fe, 48Ni, 54Zn

the heaviest proton emitter identified so far ¹⁸⁵Bi (Z=83)

Our goal is to extend these studies into the sub-uranium region

