

Decay spectroscopy of neutronrich Lead isotopes

<u>A. Gottardo</u>, J.J. Valiente-Dobon, G. Benzoni, R. Nicolini

1. Experimental details

2. Preliminary results

3. Seniority scheme and shell-model calculations

PRESPEC Decay Physics Workshop, Brighton, UK

The physical motivations

Need to test stability of shell structure in this region (N=126, Z=82): weakening of Z=82 when approaching drip-line ?

Presence of isomers involving high-j orbitals $vg_{9/2}$, $vi_{11/2}$, $vj_{15/2}$. Taking advantage of these isomers we want to study the developmet of nuclear structure from ²¹²Pb up to ²²⁰Pb and nearby nuclei

•Experimental β-decay data needed around ²⁰⁸Pb to validate theoretical models.

β-lifetimes needed
r-process calculations.

•Last lifetime measured for ²¹⁵Pb

The experimental challanges

The experimental setup

FRS-Rising at GSI: stopped beam campaign

Charged-states selection

Formation of many charge states owing to interactions with materials

→Isotope identification is more complicated

 \rightarrow Need to disentangle nuclei that change their charge state after S2 deg.

 $(Br)_{Ta-52} - (Br)_{52-54}$

The exotic nuclei production

1 GeVA ²³⁸U beam from UNILAC-SIS at 10⁹ pps

212,214,216Pb: 8+ isomer

216 Pb : 8⁺ isomer

²¹⁰Hg isomer

The seniority scheme

Nucleons in a valence jⁿ configuration behave according to a seniority scheme: the states can be labelled by their seniority v

SENIORITY SCHEME

For even-even nuclei, the 0⁺ ground state has seniority v = 0, while the 2⁺, 4⁺, 6⁺, 8⁺ states have v = 2

<u>In a pure seniority scheme, the relative level energies do not depend</u> <u>on the number of particles in the shell j</u>

The experimental levels and the seniority scheme

The valence space in the Kuo-Herling interaction

²⁰⁸Pb is a doubly-magic nucleus (Z=82, N=126). For neutron-rich Lead isotopes, the N=6 major shell is involved

S.p. energies		PRC 43, 602 (1992)
(MeV)	N=184	Shells
-1.40		$3d_{3/2}$
-1.45 —		$- 2g_{7/2}$
-1.90 —		$ 4s_{1/2}$
-2.37		<u> </u>
-2.51 —		— $1j_{15/2}$ N=7 major shell
-3.16 —		$-1i_{11/2}$
-3.94 —		$- 2g_{9/2}$
	N=126	

Shell model calculations with K-H

Wave functions with K-H int.

The neutron $2g_{9/2}$ shell has a dominant role for the 8⁺ isomeric state. $1i_{11/2}$, $1j_{15/2}$ and $3d_{5/2}$ also play a role

<u>8+ state wave functions: occupational numbers show</u> <u>quite pure wave functions</u>						
	²¹⁰ Pb n = 2	²¹² Pb n = 4	²¹⁴ Pb n = 6	²¹⁶ Pb n = 8	²¹⁸ Pb n = 10	0
2g _{9/2}	1.99	3.39	4.78	6.21	6.96	
1i _{11/2}	0.005	0.33	0.68	1.04	2.16	
1 j _{15/2}	0.002	0.16	0.32	0.43	0.59) er
3d _{5/2}	0.0008	0.04	0.08	0.11	0.14	s

The ground state wave functions are in general more fragmented, with the $1i_{11/2}$ shell around 25 - 30 %

Isomer lifetimes and B(E2)

Preliminary results on B(E2) estimations. Theoretical values are using an effective charge of 1 for neutrons.

²¹⁰ Pb	²¹² Pb	²¹⁴ Pb	²¹⁶ Pb
T _{1/2} = 0.20 (2) μs	T _{1/2} = 5.0 (3) μs	T _{1/2} = 5.9 (1) μs	T _{1/2} = 0.40 (1) μs

Isomer lifetimes and B(E2)

	²¹⁰ Pb	²¹² Pb	²¹⁴ Pb	²¹⁶ Pb
B(E2) e²fm⁴ Experiment	47(4)	2.1(3)	1.66-2.4	24.7-30.5
B(E2) e ² fm ⁴ Theory	64	12.4	0.4	25.7

Pure seniority scheme for $g_{9/2}$: 9:1:1:9

PLB 606, 34 (2005) ???

The results are roughly indipendent of the interaction used: K-H, CD-Bonn, Delta, Gaussian

One possibility is the mixing of states (6+) with seniority 4: need to modify the interaction (pairing, 3-body ?)

B.A. Brown *et al.* PLB 695, 507 (2011)

Another possibility is the inclusion of 2p-2h excitations from the N=126 core

Conclusions

- 1- The neutron-rich region along Z = 82 was populated, enabling to study the nuclear structure in this region
- 2- The observed shell structure seems to follow a seniority scheme...
- However, a closer look reveals that the B(E2) values have an unexpected behaviour

3 -The observed transitions in ²¹⁰Hg suggest a significant change in structure

Future: more exotic nuclei in this region, GSI very competitive

Collaboration (Rising)

A. Gottardo, J.J. Valiente-Dobon, G. Benzoni, R. Nicolini,

A. Bracco, G. de Angelis, F.C.L. Crespi,F. Camera, A. Corsi, S. Leoni, B. Million, O. Wieland, D.R. Napoli, E. Sahin, S.Lunardi,R. Menegazzo, D. Mengoni, F. Recchia, P. Boutachkov, L. Cortes, C. Domingo-Prado,F. Farinon, H. Geissel, J. Gerl, N. Goel, M. Gorska, J. Grebosz, E. Gregor, T.Haberman,I. Kojouharov, N. Kurz, C. Nociforo, S. Pietri, A. Prochazka, W.Prokopowicz, H. Schaffner,A. Sharma, H. Weick, H-J.Wollersheim, A.M. Bruce, A.M. Denis Bacelar, A. Algora,A. Gadea, M. Pf⁻utzner, Zs. Podolyak, N. Al-Dahan, N. Alkhomashi, M. Bowry, M. Bunce,A. Deo, G.F. Farrelly, M.W. Reed, P.H. Regan, T.P.D. Swan, P.M. Walker, K. Eppinger,S. Klupp, K. Steger, J. Alcantara Nunez, Y. Ayyad, J. Benlliure, E. Casarejos, R. Janik, B. Sitar, P. Strmen, I. Szarka, M. Doncel, S.Mandal, D. Siwal, F. Naqvi, T. Pissulla, D. Rudolph, R. Hoischen, P.R.P. Allegro,

R.V.Ribas,Zs. Dombradi and the Rising collaboration

1 Universitàdi Padova e INFN sezione di Padova, Padova, I;	2 INFN-LNL, Legnaro (Pd), I;
3 Università degli Studi e INFN sezione di Milano, Milano, I;	4 University of the West of Scotland, Paisley, UK;
5 GSI, Darmstadt, D;	6 Univ. Of Brighton, Brighton, UK;
7 IFIC, Valencia, E;	8 University of Warsaw, Warsaw, Pl;
9 Universiy of Surrey, Guildford, UK;	10 TU Munich, Munich, D;
11University of Santiago de Compostela, Santiago de Compo	ostela, E;
12 Univ. Of Salamanca, Salamanca, E;	13Univ. of Delhi, Delhi, IND;
14 IKP Koeln, Koeln, D;	15 Lund University, Lund, S;
16 Univ. Of Sao Paulo, Sao Paulo, Br;	17ATOMKI, Debrecen, H.

HAPPY BIRTHDAY

²¹²Pb: 8⁺ isomer

T_{1/2} = 5.0 (3) μs

Energy (keV)

²¹⁴Pb : 8⁺ isomer

$T_{1/2} = 5.9 (1) \ \mu s$

