Isomers and Isospin Symmetry Aspects in the $1f_{7/2}$ Shell

D. Rudolph for the RISING Stopped Beam Collaboration

Department of Physics Lund University

PRESPEC Decay Workshop, Brighton, January 2011

Dirk Rudolph (Lund University) Isomers and Isospin Symmetry Aspects in

- Brief Introduction
- The 10⁺ Mirror Isomers in $\frac{54}{28}$ Ni₂₆ $\frac{54}{26}$ Fe₂₈
- The $3/2^-$ Mirror Isomers in $\frac{53}{27}$ Co₂₆ $-\frac{53}{26}$ Fe₂₇
- Mirror Isomers in the Lower 1 f_{7/2} Shell
- Brief Summary

Why ⁵⁴Ni?

- Close to a (soft) doubly-magic nucleus, namely N = Z = 28 ⁵⁶Ni.
- Efficiently probes isospin symmetry breaking effects if the *fp* shell.
- The *fp* shell is a well confined, well established shell-model configuration space.
- Spherical shell-model calculations usually provide excellent spectroscopic information, including well-deformed structures and transition rates.

Isospin Symmetry Breaking

- Coulomb multipole contributions.
- Coulomb monopole contributions (radii, deformation).
- Electromagnetic spin-orbit interaction.
- Nuclear isospin breaking components, V_{BM}.

A.P. Zuker et al., PRL 89, 142502 (2002) J. Duflo & A.P. Zuker.

PRC66, 051304(R) (2002)

Recent Review: M.A. Bentley and S.M. Lenzi, Prog. Part. Nucl. Phys. 59, 497 (2007)

Experimental Results A = 54

PRESPEC 2011 5 / 25

< < >> < <</>

-

Shell-Model Calculations ⁵⁴Fe

ANTOINE shell-model code Full fp space, t=6Including Coulomb effects and V_{BM} E2 eff. charges: $\varepsilon_p = 1.15$ and $\varepsilon_n = 0.80$ (R. du Rietz et al., PRL93, 222501 (2004)) E4 eff. charges: $\varepsilon_p = 1.50$ and $\varepsilon_n = 0.50$

exp	GXPF1	KB3G
1.69(4)	1.95	2.03
0.79(8)	1.55	1.30
525(10)	453	437
1.8(2)	3.0	2.4
7.281(10)	7.23	6.82
52(8)	60.7	55.6
	exp 1.69(4) 0.79(8) 525(10) 1.8(2) 7.281(10) 52(8)	exp GXPF1 1.69(4) 1.95 0.79(8) 1.55 525(10) 453 1.8(2) 3.0 7.281(10) 7.23 52(8) 60.7

* using the experimental level scheme

Dirk Rudolph (Lund University) Isomers and Isospin Symmetry Aspects in

∃ → + ∃

Shell-Model Calculations ⁵⁴Ni

ANTOINE shell-model code Full fp space, t=6Including Coulomb effects and V_{BM} E2 eff. charges: $\varepsilon_p = 1.15$ and $\varepsilon_n = 0.80$ (R. du Rietz et al., PRL93, 222501 (2004)) E4 eff. charges: $\varepsilon_p = 1.50$ and $\varepsilon_n = 0.50$

	ехр	GXPF1	KB3G
<i>B(E2)</i> (W.u.)	2.48(7)	1.86	2.06
<i>B(E4)</i> (W.u.)	5.7(13)	5.28	4.66
τ _(γ + CE) (ns) [*]	342(9)	452	413
b (E4) (%)*	5.1(11)	6.2	5.0
μ (10⁺)(μ <mark>²</mark>)		3.93	4.24
Q (10 ⁺)(efm ²)		63.7	58.5

* using the experimental level scheme

Dirk Rudolph (Lund University) Isomers and Isospin Symmetry Aspects in

ㅋㅋ ㅋㅋ

Mirror Energy Differences – KB3G

D. Rudolph et al., Phys. Rev. C 78, 021301(R) (2008)

Dirk Rudolph (Lund University) Isomers and Isospin Symmetry Aspects in

'In-Situ' Production of Isomers

136, 1158, 1830 keV: 19/2⁻ isomer in ⁴³Sc (470 ns) 411, 1130, 1408 keV: 10⁺ isomer in ⁵⁴Fe (365 ns)

Secondary reactions in the passive stopper!

$$\begin{array}{c} \bullet & 5^{4}\text{Ni } 10^{+} \text{ isomer related} \\ \bullet & \text{specific long-lived background} \\ \end{array} \\ \begin{array}{c} 5^{54}\text{Ni gated} \\ 5^{52,53}\text{Co gated} \end{array} \right\} \begin{array}{c} \text{time:} \\ 0.1 - 1.0 \mu \text{ s} \\ 0.1 - 16 \mu \text{ s} \end{array}$$

'In-Situ' Production of Isomers

741 keV: known 3/2– isomer in 53 Fe (63.5 ns) 646 keV: mirror isomer in 53 Co!?

t =7 isospin dependent shell–model calculations ANTOINE code, KB3G and GXPF1A interactions

MED values (keV)

	3/2-	9/2-
ехр	-95	-1
KB3G	-147	8
GXPF1A	-130	1

everything's fine ... BUT: transition rates?

Predictions are "too fast"!

Scan of $1f_{7/2}$, $N \leq Z$ lsotopes

PRESPEC 2011 12 / 25

Clean Spectra & Good Statistics

PRESPEC 2011 13 / 25

Orbital-dependent Effective Charges?

RISING (also old fusion-evap)

Theory

J.J. Valiente-Dobón *et al.*, PRL102, 242502 (2009) R. Hoischen *et al.*, JPG, in press (2011)

H.L. Ma et al., PRC80, 014316 (2009)

Orbital-dependent Effective Charges?

R. du Rietz *et al.*, PRL93, 222501 (2004)
D. Rudolph *et al.*, PRC78, 021301(R) (2008)
J.J. Valiente-Dobón *et al.*, PRL102, 242502 (2009)
R. Hoischen *et al.*, JPG, in press (2011)
H.L. Ma *et al.*, PRC80, 014316 (2009)

Fusion-evap, plunger RISING Transfer, PRISMA-CLARA RISING (also old fusion-evap) Theory

Fast-Timing: $T_{1/2}(ps)$ for A=42,43,54?

Collaboration ⁵⁴Ni Experiment

R. Hoischen¹, D. Rudolph¹, M. Hellström¹, E.K. Johansson¹, S. Pietri², Zs. Podolyák², P.H. Regan² F. Becker³, P. Bednarczyk^{3,4}, L. Caceres^{3,5}, P. Doornenbal³, J. Gerl³, M. Górska³ J. Gr<u>e</u>bosz^{4,3}, I. Kojouharov³, N. Kurz³, W. Prokopowicz^{3,4}, H. Schaffner³, H.J. Wollersheim³ L.-L. Andersson¹, L. Atanasova⁶, D.L. Balabanski^{7,8}, M.A. Bentley⁹, A. Blazhev¹⁰ C. Brandau^{2,3}, J. Brown⁸, C. Fahlander¹, A.B. Garnsworthy^{2,11}, A. Jungclaus⁵ S.J. Steer² S.M. Lenzi

11 institutions

GSI technical & scientific work force

External preparation force (Surrey & Lund)

Theory support

< ∃ > < ∃ >

Experimental Principle - Happy Collaboration

Dirk Rudolph (Lund University) Isomers and Isospin Symmetry Aspects in

PRESPEC 2011 1

・ 同 ト ・ ヨ ト ・ ヨ

18 / 25

Isomeric Ratios

Dirk Rudolph (Lund University) Isomers and Isospin Symmetry Aspects in

19 / 25

Spectroscopic Factors

			T1/2	(s)	
	Q _p (MeV)	l _p (ħ)	WKB ^{1⁻//2}	exp	Sexp
⁵³ Co ²	1.59(3)	9	1.3 ·10 -6	~17	~8·10 ⁻⁸
⁵⁴ Ni	1.27(5)	5	7.1 ·10 -13	4.1 ·10 -7	1.7 -10 -6
				5.1 ·10 ⁻⁷	1.4 ·10 ⁻⁶
	2.65(5)	7	2.9 ·10 -13		
				2.8 ·10 -7	1.0 ·10 ⁻⁶
⁹⁴ Ag ³	0.79(3)	4	2.0 ·10 ⁻⁵	21(6)	1 -10 -6
-	1.01(3)	5	5.5 ·10 ⁻⁶	18(4)	3 - 10 - 7
⁵⁸ Cu ⁴	2.341(5)	4	2.0 ·10 -16	~2.10-13	~1.10-3

¹ S. Hofmann, priv. comm. and in Nuclear Decay Modes (IOP Publishing, Bristol, 1996), p. 143

² K.P. Jackson et al., Phys. Lett. 33B, 281 (1970)

³ I. Mukha et al., Phys. Rev. Lett. 95, 022501 (2005)

⁴ D. Rudolph et al., Phys. Rev. Lett. 80, 3018 (1998); Eur. Phys. J. A14, 137 (2002)

Assuming an additional 25% proton branch into the ground state of ⁵³ Co

+ 3 > 4 3

Mirror Energy Differences – GXPF1A

PRESPEC 2011 21 / 25

Example: 10⁺ states in A=54 mirrors:

Configuration	Partition (%) Fe Ni			
$f_{7/2}^{-2} \ge f_{7/2}^{-1} p_{3/2}$	34.3	38.8	GXPF1A	L 10/
	38.4	43.1	KB3G	J + + /0
f ⁻² _{7/2} x f ⁻¹ _{7/2} f _{5/2}	14.8	11.0	GXPF1A	1 20/
	11.9	7.9	KB3G	5 - 3%

∆ ~ **+/**- 4%

Dirk Rudolph (Lund University) Isomers and Isospin Symmetry Aspects in

Identification and Energy-Time Correlations

⁵⁴Ni: DGF-timing

~ 0.9 million entries

24 / 25

< ロ > < 同 > < 回 > < 回 >

PRESPEC 2011

Time Spectra of ⁵⁴Ni

Dirk Rudolph (Lund University) Isomers and Isospin Symmetry Aspects in

- E

25 / 25