Lifetime of the $\left.\right|^{\pi}=4^{-}$Intruder State in ${ }^{34} \mathrm{P}$ using LaBr_{3} : Ce Fast Timing
 P.J.R. Mason

Lifetime of the $I^{\pi}=4^{-}$Intruder State in ${ }^{34} \mathrm{P}$ using LaBr_{3} : Ce Fast Timing
 P.J.R. Mason

Motivation

- Breakdown of the $\mathrm{N}=20$ shell gap in neutron-rich nuclei linked to population of deformed intruder states, e.g. $f_{7 / 2}$
- Neutron-rich $\mathrm{Ne}, \mathrm{Na}, \mathrm{Mg}$ isotopes observed to have well-deformed ground states. Region termed "island of inversion"
- Spectroscopy of nuclei near island of inversion can help understand these intruder orbitals within the nuclear shell model

R. CHAKRABARTI et al. PHYSICAL REVIEW C 80, 034326 (2009) P. C. BENDER et al. PHYSICAL REVIEW C 80, 014302 (2009)
- Recent study of ${ }^{34} \mathrm{P}$ identified lowlying $\|^{\pi}=4-$ state at $\mathrm{E}=2305 \mathrm{keV}$.
- Spin and parity assigned on basis of DCO and polarization measurements.
- $\left.\right|^{\pi}=4^{-} \rightarrow 2^{+}$transition can proceed by M2 and/or E3.
- Aim of experiment is to measure precision lifetime for 2305 keV state and obtain $B(M 2)$ and $B(E 3)$ values.
- Previous studies limit half-life to $0.3 \mathrm{~ns}<\mathrm{t}_{1 / 2}<2.5 \mathrm{~ns}$

Motivation

- Theoretical predictions suggest 2^{+}state based primarily on $\left[\pi 2 \mathrm{~s}_{1 / 2} \times\left(v 1 \mathrm{~d}_{3 / 2}\right)^{-1}\right]$ configuration and $4-$ state based primarily on $\left[\pi 2 \mathrm{~s}_{1 / 2} \times \vee 1 \mathrm{f}_{7 / 2}\right.$] configuration.
- Thus expect transition to go mainly via $\mathrm{f}_{7 / 2} \rightarrow \mathrm{~d}_{3 / 2}, \mathrm{M} 2$ transition.
- Different admixtures in 2^{+}and 4 - states allow mixed M2/E3 transition

Experiment

${ }^{18} \mathrm{O}\left({ }^{18} \mathrm{O}, \mathrm{pn}\right){ }^{34} \mathrm{P}$ fusion-evaporation at 36 MeV $\sigma \sim 5-10 \mathrm{mb}$
$50 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{Ta}_{2}{ }^{18} \mathrm{O}$ Enriched foil ${ }^{18} \mathrm{O}$ Beam from Bucharest Tandem ($\sim 20 \mathrm{pnA}$)

Array 8 HPGe
(unsuppressed) and 7
LaBr_{3} :Ce detectors
-3 (2"x2") cylindrical
-2 (1"x1.5") conical
-2 (1.5"x1.5") cylindrical

Highly non-linear gains
Substantial gain drift through-out experiment requires run-by-run gainmatching

Worth considering for future experiments

Detector Performance

Detector Performance

Gate in Ge to create clean $\mathrm{LaBr}_{3}-\mathrm{LaBr}_{3}$-dT matrix

Gates in LaBr_{3} detectors to observe time difference and obtain lifetime for state

Assumes $\mathrm{t}_{1 / 2}\left(2^{+}\right) \ll \mathrm{t}_{1 / 2}\left(4^{-}\right)$

Different gates and sums of gates possible

Can check lifetime of 2^{+}state is short and examine prompt response of detectors inbeam

Gate in Ge to create clean $\mathrm{LaBr}_{3}-\mathrm{LaBr}_{3}$-dT matrix

Gates in LaBr_{3} detectors to observe time difference and obtain lifetime for state

=> Final half-life likely to be shorter than 1.1ns

Should be fitted with Gaussian-exponential convolution to account for time resolution

Correct for time-walk

Improve gates, backgrounds

- Time-walk correction for LaBr_{3} detectors
- Find best gates / combination of gates in Ge and LaBr_{3} detectors to create time spectra.
- Perform sdfp shell model calculations and extract predicted $B(M 2)$ and $B(E 3)$ values and mixing ratios. Compare with result
- Lifetimes in other nuclei in data set which fall within the time range suitable for LaBr_{3} measurement?

P.J.R. Mason, P.H. Regan, T. Al-Harbi, M. Bowry, M. Nakhostin, Zs. Podolyàk University of Surrey, UK

N. Mărginean, D. Bucurescu, G. Căta-Denil, I. Căta-Denil, D. Deleanu, D. Filipescu,T. Glodarui, D. Ghiță, R. Mărginean, C. Mihai, A. Negret, S. Pascu, T. Sava, L. Stroe, G. Suliman, N.V. Zamfir IFIN-HH, Bucharest, Romania
A.M. Bruce, C. Rodriguez Triguero University of Brighton, UK
U. Garg

University of Notre Dame, USA
P.C. Bender

Florida State University, USA
M. Bostan, A. Kusoglu, M. Nizamettiu Erduran, Istanbul University, Turkey
P. Destitov

BAS-INRNE, Bulgaria
N. Alkhomashi

KACST, Saudi Arabia
R. Chakrabarti

UGC-DAE Kolkata, India

R. CHAKRABARTI et al. PHYSICAL REVIEW C 80, 034326 (2009)

