

AGATA Electronics

- AGATA at LNL
- · Electronics needed for gamma ray tracking
- System overview
- Digitisers
- Pre-processing
- GTS
- · Results
- Software
- Connecting other experiments to AGATA
- · International collaboration

- AGATA at LNL
- · Electronics needed for gamma ray tracking
- System overview
- Digitisers
- Pre-processing
- GTS
- · Results
- Software
- Connecting other experiments to AGATA
- · International collaboration

- AGATA at LNL
- · Electronics needed for gamma ray tracking
- System overview
- Digitisers
- Pre-processing
- GTS
- · Results
- Software
- Connecting other experiments to AGATA
- · International collaboration

Idea of γ -ray tracking

large opening angle means poor energy resolution at high recoil velocity.

Previously we had to waste scattered gammas. Technology is available now to track them..

Combination of:

- segmented detectors
- digital electronics
- pulse processing
- •tracking the γ-rays

Ingredients of γ -Tracking

1

Highly segmented HPGe detectors

2

Digital electronics to record and process segment signals 4

Identified interaction

 $(x,y,z,E,t)_i$

Pulse Shape Analysis
to decompose
recorded waves

3

Reconstruction of tracks e.g. by evaluation of permutations of interaction points

reconstructed γ -rays

- AGATA at LNL
- · Electronics needed for gamma ray tracking
- System overview
- Digitisers
- Pre-processing
- GTS
- · Results
- Software
- Connecting other experiments to AGATA
- · International collaboration

Initial Data rates for Demonstrator

15 detectors, 10 kHz singles, GL-trigger, Ancillary \rightarrow 1 kHz into PSA

Initially traces will be recorded for off-line validation

Schematic of the Digital Electronics and Data Acquisition System for AGATA

Segment level processing: energy, time

Detector level processing: trigger, time, PSA

Global level processing: event building, tracking, software trigger, data storage

- AGATA at LNL
- · Electronics needed for gamma ray tracking
- System overview
- Digitisers
- Pre-processing
- GTS
- · Results
- Software
- Connecting other experiments to AGATA
- · International collaboration

AGATA Digitiser

Digitiser Block Diagram

- 44 Channels 100 MHz/14 bits.
- 38 Optical lines 2Gbits/s.
- 400 W Power.
- Cooling by water.
- Specific Mechanical Housing.
- Ethernet for Slow Control.

AGATA Digitiser Module

36 segments, 1 core, 7 spare= 44 channels each channel 100 MHz, 14 bits (Strasbourg - Daresbury - Liverpool)

- Mounted close to the Detector 5-10 m
- Power Dissipation around 220W
- · Water Cooling required
- Testing in Liverpool
 (December 2006)
- Production in progress (for 18 modules)

Digitiser Slow Control

AGATA Digitizer: Control

- Upgrade control card to run web server inside the digitiser.
- Other possible work:
 - Change 14bit ADC to 16bits (if input signal is good via MDR is good enough to see improvement)
 - Squeeze into small packaging (if we can do so without compromising the analogue input performance)

- AGATA at LNL
- · Electronics needed for gamma ray tracking
- System overview
- Digitisers
- Pre-processing
- GTS
- · Results
- Software
- Connecting other experiments to AGATA
- · International collaboration

What does pre-processing do?

38 fibres in

(Core low/high gain + 36 segs). = 38 x 2Gbps (7.6 Gbytes/sec) N.B. reduction from 50KHz to 10KHz singles rate is for demonstrator only (to help PSA). Preprocessor output rate for full AGATA will be higher- 35 or 50KHz.

What does pre-processing do?

- Deserialises data from the digitiser
- Extracts all useful parameters which can be calculated on a per-channel basis in real time.
 - Energy
 - Digitiser input offset control,
 - Time Over Threshold (preamp saturation = Pion energy)
 - Trigger (core only)
 - Timestamps the data when a local core trigger is found
- Passes on these parameters, with leading edge of the digitised trace, to PSA.

- Interfaces with Global Trigger via GTS mezzanine to reduce data rate if necessary
- Sends GTS clock and clock synch to digitiser
- Concentrates and buffers data ready for transfer to PSA
- Prepares data for PSA (could perform zero suppression if needed)

Pre-Processing hardware

Carrier (ATCA format)

Mezzanines (PMC format)

Photos- INFN Padova and CSNSM Orsay

Pre-Processing people

Damiano Bortolato Marco Bellato Xavier Lafay Andrea Triossi

- AGATA at LNL
- · Electronics needed for gamma ray tracking
- System overview
- Digitisers
- Pre-processing
- GTS
- · Results
- Software
- Connecting other experiments to AGATA
- · International collaboration

GTS Hierarchy

- AGATA at LNL
- · Electronics needed for gamma ray tracking
- System overview
- Digitisers
- Pre-processing
- GTS
- · Results
- Software
- Connecting other experiments to AGATA
- · International collaboration

Digitized, optically-transmitted and pre-processed AGATA traces

First events readout via PCIe July 4

Readout speed > 100 Mb/s, limited by disk access

July 2008 energy resolution

Feb 2009 Triple Cluster Live tracked data

Status of electronics

- Digitisers
 - 18 built
 - 8 LNL
 - · 3 Turkey
 - · 2 Strasbourg
 - 5 in DL.
- Pre-processing Carriers
 - first production cards delivered in Orsay 4/2/09.
 - Under tests before starting remainder of production.
- Pre-processing Mezzanines
 - production started
 - first cards to be tested week 12.
- GTS mezzanine
 - Final prototype test starting now
 - Production starts end April

- AGATA at LNL
- · Electronics needed for gamma ray tracking
- System overview
- Digitisers
- Pre-processing
- GTS
- · Results
- Software
- Connecting other experiments to AGATA
- · International collaboration

Provisional data format from PP

Item		Length in 16-bit words
Mezzanine header		16
Channel 1	header	8
	trace	160 samples
Channel 2	header	8
	trace	160 samples
Channel 3 6		

0	Mezzanine ID	
1	Event number (2 words)	
2		
3, 4, 5	Timestamp (3)	
6	Number of samples in trace	
715	Spare	

0	Channel ID	
1, 2	Energy 2 words (need to modify MWD)	
3	Channel status (pileup, over/underflow)	
4 7	Spare (e.g. BL value, energy from ToT)	

Length of Segment mezzanine block

$$\rightarrow$$
 16+6*(8+160) = 1024 words

Length of Core Mezzanine block

$$\rightarrow$$
 16+2*(8+160) = 352 words

Length of event from Carrier 0 (CC+2 SG)

Length of event from Carrier 1 (4 SG)

Total length of event → 6496 words

Possibility to reduce length by ~50 %

Run Control Structure GUI WSDL Facade Run Control Services Run Control Logging Top Manager Service Resource Service Grid Narval Storage Slow **Ancillary** Manager Manager Manager Manager Manager Grid DAQ Disk Prisma Slow Data Mover Narval Manager Control DAQ From Christophe Theisen's AGATA week talk July 14th, 2008 CEA DSM Irfu - Christophe THEISEN - AGATA week Uppsala

- AGATA at LNL
- · Electronics needed for gamma ray tracking
- System overview
- Digitisers
- Pre-processing
- GTS
- · Results
- Software
- Connecting other experiments to AGATA
- · International collaboration

PRISMA with AGATA DAQ scheme

- AGATA at LNL
- · Electronics needed for gamma ray tracking
- System overview
- Digitisers
- Pre-processing
- GTS
- · Results
- Software
- Connecting other experiments to AGATA
- International collaboration

AGATA- designed by an international team

- **DIGITISER** Team size approx 10 people, 3 in UK (Patrick Coleman-Smith, Jim Thornhill, Dave Wells)
 - STFC Daresbury
 - Digitiser digital design and PCB design for core and segment cards, production VHDL, digitiser mechanics
 - University of Liverpool
 - · Digitiser Power supply and control boards, control card VHDL, digitiser mechanics
 - IPHC Strasbourg
 - · Digitiser analogue design for core and segment cards and VHDL for standalone testing
- **Pre-processing** Team Size approx 14 people, 1 in UK (lan Lazarus)
 - IPN Orsay
 - · Carrier VHDL design (FPGA2- trigger distribution)
 - · Carrier VHDL production code
 - · Carrier commissioning (production run of 34 cards)
 - · Original carrier design
 - INFN Padua
 - · Carrier rework (prototype and pre-production)
 - · Carrier VHDL (release 0 for initial tests)
 - · Carrier VHDL (FPGA 0- data readout)
 - Delivery of 6 tested carriers system commissioning
 - GTS Mezzanine
 - CSNSM Orsay
 - · Segment mezzanine (hardware and VHDL)
 - · Core mezzanine (hardware and VHDL)
 - Production run of core and segment mezzanines
 - IPHC Strasbourg
 - Supply of MWD code for use in core and segment mezzanines in "black box" format
 - STFC RAL and LPC CAEN
 - · VHDL code for carrier readout (PCIe and proprietry "FASTER" protocols)
- · Global clock and trigger systems (GTS) Team size approx 5 people, none in UK
 - INFN Padua
 - · GTS trigger algorithms
 - · Clock alignment systems
 - · GTS processor card and Mezzanine card design