
 ./doc/langRef.xotcl

Package/File Information

No package provided/required

Defined Objects/Classes:

::xotcl::Slot:• 

Attribute:• 

Class: __unknown, allinstances, alloc, create, info, instdestroy, instfilter, instfilterguard, instforward,
instinvar, instmixin, instparametercmd, instproc, new, parameter, parameterclass, recreate, superclass,
unknown.

• 

Object: abstract, append, array, autoname, check, class, cleanup, configure, contains, copy, destroy,
eval, exists, extractConfigureArg, filter, filterguard, filtersearch, forward, getExitHandler, hasclass,
incr, info, instvar, invar, isclass, ismetaclass, ismixin, isobject, istype, lappend, mixin, move, noinit,
parametercmd, proc, procsearch, requireNamespace, set, setExitHandler, subst, trace, unset, uplevel,
upvar, volatile, vwait.

• 

Filename:  ./doc/langRef.xotcl

Description: XOTcl language reference. Describes predefined objects and classes.
Predefined
primitives:

XOTcl contains the following predefined primitives (Tcl commands):

self
computes callstack related information. It can be used in the following ways:

self − returns the name of the object, which is currently in execution. If it is
called from outside of a proc, it returns the error message ``Can't find
self''.

◊ 

self class − the self command with a given argument class returns the
name of the class, which holds the currently executing instproc. Note, that this
may be different to the class of the current object. If it is called from a proc it
returns an empty string.

◊ 

self proc − the self command with a given argument proc returns the
name of the currently executing proc or instproc.

◊ 

self callingclass: Returns class name of the class that has called the
executing method.

◊ 

self callingobject: Returns object name of the object that has called
the executing method.

◊ 

self callingproc: Returns proc name of the method that has called the
executing method.

◊ 

self calledclass: Returns class name of the class that holds the target
proc (in mixins and filters).

◊ 

self calledproc: Returns method name of the target proc (only
applicable in a filter).

◊ 

XOTcl − Documentation −− ./doc/langRef.xotcl

  ./doc/langRef.xotcl 1



self isnextcall: Return 1 if this method was invoked via next,
otherwise 0

◊ 

self next: Return the "next" method on the precedence path as a string.◊ 

self filterreg: In a filter: returns the name of the object/class on which
the filter is registered. Returns either 'objName filter filterName' or
'className instfilter filterName'.

◊ 

self callinglevel: Returns the calling level, from where the actual
proc was called from. Intermediary next calls are ignored in this computation.
The level is returned in a form it can be used as first argument in uplevel or
upvar.

◊ 

self activelevel: Returns the level, from where the actual proc was
invoked from. This might be the calling level or a next call, whatever is
higher in the stack. The level is returned in a form it can be used as first
argument in uplevel or upvar.

◊ 

my methodName
is a short form for [self] methodName and can only be called in a context of an
instproc or an method specific proc. It allows certain optimizations and shorter to
write.

next
invokes the next shadowed (same−named) method on the precedence path and returns
its result. If next is called without arguments, the arguments of the current method
are passed through the called method. If next is invoked with the flag −−noArgs,
the shadowed method is called without arguments. If other arguments are specified for
next, these will be used for the call.

myvar varName
returns the fully qualified variable name of the specified variable.

myproc methodName ?args?
calls the specified XOTcl method without the need of using "[list [self]
methodName ...]".

::xotcl::alias class|obj methodName ?−objscope? ?−per−object?
cmdName

can be used to register a predefined C−implemented Tcl command as method
methodName. The option −objscope has the same meaning as for forwarder
(instance variables of the calling object appear in the local scope of the Tcl
command), −per−object has the same meaning as for the method method (when
used on a class, the method is registered for the class object only, but not for the
instances). This command can be used to bootstrap xotcl (when e.g. no methods are
available).

::xotcl::configure filter ?on|off?
allows to turn on or off filters globally for the current interpreter. By default, the filter
state is turned off. This function returns the old filter state. This function is needed for
the serializer that is intended to serialize the objects classes independent of filter
settings.

::xotcl::configure softrecreate ?on|off?
allows to control what should happen, when an object / a class is recreated. Per default
it is set off, which means that the object/class is destroyed and all relations (e.g.
subclass/superclass) to other objects/classes are destroyed as well. If
softrecreate is set, the object is reseted, but not destroyed, the relations are kept.
This is important, when e.g. reloading a file with class definitions (e.g. when used in

XOTcl − Documentation −− ./doc/langRef.xotcl

Package/File Information 2



OpenACS with file watching and reloading). With softrecreate set, it is not
necessary to recreate dependent subclasses etc.

Example: e.g. there is a class hierarchy A softrecreate set, a reload of B means first a
destroy of B, leading to A softrecreate is set, the structure remains unchanged.

::xotcl::finalize
Delete all XOTcl objects and classes and free all associated memory.

This command has the only purpose to delete all objects and classes of an interpreter
in a multi−threaded environment at a safe time.

Background: when XOTcl is used in a threaded environment such as for example in
AOLserver, one has to take care that the deletion of objects and classes happens in a
safe environment, where the XOTcl destructors (destroy methods) are still able to run.
Without ::xotcl::finalize the deletion happens in Tcl_FinalizeThread(), after thread
cleanup (where e.g. the thread local storage is freed). This can lead to memory leaks
in AOLserver, which allocates e.g. some structures on demand, but since this happens
after cleanup, it will leak. A simple ns_log in a destructor might lead to this problem.
The solution is to call ::xotcl::finalize in the "delete trace" in AOLserver (as it
happens in OpenACS).

Note, that ::xotcl::finalize is not intended for application programs.

Class: ::xotcl::Slot

Class: Class
Heritage: Object

Description: A slot is a meta−object that manages property−changes of objects. A property is either an
attribute or a role of an relation (e.g. in system slots). The predefined system slots are class,
superclass, mixin, instmixin, filter, instfilter. These slots appear as
methods of Object or Class.

The slots provide a common query and setting interface. Every multivalued slot provides e.g. a
method add to add a value to the list of values, and a method delete which removes it. See
for example the documentation of the slot mixin.

Parameters:

−name Name of the slot to access from an object the slot
−domain domain (object or class) of a slot on which it can be used
−multivalued boolean value for specifying single or multiple values (lists)

−defaultmethods list of two elements for specifying which methods are called per default,
when no slot method is explicitly specified

−manager the manager object of the slot (per default [self])
−per−object

XOTcl − Documentation −− ./doc/langRef.xotcl

 Class: ::xotcl::Slot 3



specify whether a slot should be used per class or per object; note that there
is a restricted usage if applied per class, since defaults etc, work per
initialization

For more details, consult the tutorial.

Class: Attribute

Class: Class
Heritage: ::xotcl::Slot

Description: Attribute slots are used to manage the setting and querying of instance variables. Parameters:

−default specify a default value
−type specify the type of a slot

−initcmd specify a Tcl command to be executed when the value of the associated
variable is read the first time; allows lazy initialization

−valuecmd specify a Tcl command to be executed whenever the variable is read
−valuechangedcmd specify a Tcl command to be executed whenever the variable is changed
Example of a class definition with three attribute slots:

Class Person −slots {
Attribute name
Attribute salary −default 0
Attribute projects −default {} −multivalued true

  }
  Person p1 −name "John Doe"

The slot parameters default, initcmd and valuecmd have to be used mutually
exclusively. For more details, consult the tutorial.

Class: Class

Class: Class
Heritage: Object
Procs/Instprocs: __unknown, allinstances, alloc, create, info, instdestroy, instfilter, instfilterguard,
instforward, instinvar, instmixin, instparametercmd, instproc, new, parameter, parameterclass, recreate,
superclass, unknown.

Description: This meta−class holds the pre−defined methods available for all XOTcl classes.

Instprocs

alloc obj ?args?
Arguments: obj: new obj/class name

?args?: arguments passed to the new class after creation
Description: Allocate an uninitialized XOTcl object or class. Alloc is used by the method create

to allocate the object. Note that create also calls as well configure and init

• 

XOTcl − Documentation −− ./doc/langRef.xotcl

 Class: Attribute 4



to initialized the object. Only in seldom cases the
programmer may want to suppress the create mechanism and
just allocate uninitiaized objects via alloc.

Return: new class name
allinstances
Description: Compute all immediate and indirect instances of a class
Return: fully qualified list of instances

• 

create objName ?args?
Arguments: objName: name of a new class or object

?args?: arguments passed to the constructor
Description: Create user−defined classes or objects. If the class is a meta−class, a class is created,

otherwise an object. The method create is responsible for allocating and initializing
objects. The method can be overloaded e.g. in a metaclass if other initialization
behavior is wanted.

The standard behavior of create is as follows:

Call the method alloc to create an uninitialized object.1. 
Call the method searchDefaults to set default values for instance
attributes−

2. 

Call the method configure to configure the object with the values provided
at object creation time. The method configure interprets the arguments
with leading dashes as method calls.

3. 

Call the method init to allow initialization by the class. The argument passed
to init are the values from the passed argument list containing the arguments up
to the first '−'.

4. 

Create firstly calls alloc in order to allocate memory for the new object. Then default
values for parameters are searched on superclasses (an set if found). Finally the
constructor init is called on the object with all arguments up to the first '−' arg.

The create method is often called implicitly through the unknown mechanism
when a class (meta−class) is called with an unknown method. E.g. the following two
commands are equivalent

    Car herby −color red 
    Car create herby −color red 

When a users may want to call the constructor init before other '−' methods, one can
specify '−init' explicitly in the left to right order of the '−' method. Init is called always
only once. e.g.:

   Class Car −init −superclass Vehicle 

Return: name of the created instance (result of alloc)

• 

info args
Arguments: args: info options
Description: Introspection of classes. All options available for objects (see info object) is also

available for classes. The following options can be specified:
ClassName info classchildren ?pattern?: Returns the list of
nested classes with fully qualified names if pattern was not specified,

♦ 

• 

XOTcl − Documentation −− ./doc/langRef.xotcl

Instprocs 5



otherwise it returns all class children where the class name matches the pattern.
ClassName info classparent: Returns the class ClassName is nesting
to.

♦ 

ClassName info heritage ?pattern?: Returns a list of all classes
in the precedence order of the class hierarchy. If pattern is specified, only
matching values are returned.

♦ 

ClassName info instances ?−closure? ?pattern?: Returns a
list of the instances of the class. If −closure is specified, the resultet
contains as well the instances of subclasses. If pattern is specified and it
contains wildcards, all matching instances are returned. If pattern does not
contain wildcards, either the fully qualified name is returned, or empty, if no
match exists.

♦ 

ClassName info instargs method: Returns the arguments of the
specified instproc (instance method).

♦ 

ClassName info instbody method: Returns the body of the specified
instproc (instance method).

♦ 

ClassName info instcommands ?pattern?: Returns all commands
defined for the class. If pattern is specified it returns all commands that match
the pattern.

♦ 

ClassName info instdefault method arg var: Returns 1 if the
argument arg of the instproc (instance method) method has a default value,
otherwise 0. If it exists the default value is stored in var.

♦ 

ClassName info instfilter: Returns the list of registered filters.
With −guard modifier all instfilterguards are integrated ( ClassName info
instfilter −guards).

♦ 

objName info instfilterguard name: Returns the guards for
instfilter identified by name.

♦ 

objName info instforward ?−definition name?
?pattern?: Returns the list of instforwarders. One can call this method
either without the optional arguments, or with the pattern or with
−definition name. When the pattern is specified only the matching
instforwarders are returned. When the definition option is used together
with a name of a isntforwarder, the definition of the instforwarder with all
flags is returned in a way that can be used e.g. for registering the instforwarder
on another class.

♦ 

ClassName info instinvar: Returns class invariants.♦ 

ClassName info instmixin ?pattern?: Returns the list of
instmixins of this class. If pattern is specified and it contains wildcards, all
matching mixin classes are returned. If pattern does not contain wildcards,
either the fully qualified name is returned, or empty, if no match exists.

♦ 

ClassName info instmixinof ?−closure? ?pattern?:
Returns the list of classes, into which this class was mixed in via instmixin.
This is the inverse function of ClassName info instmixin. If
−closure is specified, also the classes are returned, for which the class is
indirectly mixed in via instmixin. If pattern is specified and it contains
wildcards, all matching mixin classes are returned. If pattern does not
contain wildcards, either the fully qualified name is returned, or empty, if no
match exists.

♦ 

ClassName info instnonposargs methodName: returns list of
non−positional args of methodName

♦ 

XOTcl − Documentation −− ./doc/langRef.xotcl

Instprocs 6



objName info instparametercmd ?pattern?: Returns a list of
registered instparametercmds the class (or empty if there are none). If
pattern is specified, only the matching instparametercmds are returned.

♦ 

ClassName info instpost methodName: Returns post assertions of
methodName.

♦ 

ClassName info instpre methodName: Returns pre assertions of
methodName.

♦ 

ClassName info instprocs ?pattern?: Returns all instprocs
defined for the class. If pattern is specified it returns all instprocs that match
the pattern.

♦ 

ClassName info mixinof ?−closure? ?pattern?: Returns the
list of classes, into which this class was mixed in via per object mixin. This is
the inverse function of Object info mixin. If −closure is specified,
also the classes are returned, for which the class is indirectly mixed in as a
per−object mixin. If pattern is specified and it contains wildcards, all
matching mixin classes are returned. If pattern does not contain wildcards,
either the fully qualified name is returned, or empty, if no match exists.

♦ 

ClassName info parameter: Returns parameter list.♦ 

ClassName info subclass ?−closure? ?pattern?: Returns a
list of all subclasses of the class. If −closure is specified, the result contains
as well the subclasses of the subclasses. If pattern is specified and it
contains wildcards, all matching subclasses are returned. If pattern does not
contain wildcards, either the fully qualified name is returned, or empty, if no
match exists.

♦ 

ClassName info superclass ?−closure?
?superclassname?: Returns a list of all super−classes of the class. If
−closure is specified, the result contains as well the superclasses of the
superclasses. If pattern is specified and it contains wildcards, all matching
superclasses are returned. If pattern does not contain wildcards, either the
fully qualified name is returned, or empty, if no match exists.

♦ 

Return: Value of introspected option as a string.
instdestroy obj ?args?
Arguments: obj: obj/class name

?args?: arguments passed to the destructor
Description: Standard destructor. Destroys XOTcl object physically from the memory. Can be

overloaded for customized destruction process.

In XOTcl objects are not directly destroyed, when a destroy is encountered in a
method. Beforehand, the interpreter looks up whether the object is still referenced on
the method callstack or not. If not, the object is directly destroyed. Otherwise every
occurrence of the object on the callstack is marked as destroyed. During popping of the
callstack, for each object marked as destroyed, the reference count is decremented by
one. When no more references to the object are on the callstack the object is physically
destroyed. This way we can assure that objects are not accessed with [self] in running
methods after they are physically destroyed.

Return: empty string

• 

instfilter ?args?
Arguments: ?args?: instfilter specification
Description:

• 

XOTcl − Documentation −− ./doc/langRef.xotcl

Instprocs 7



If $args is one argument, it specifies a list of instfilters to be set. Every filter must be
an XOTcl proc/instproc within the object scope. If $args it has more argument, the
first one specifies the action. Possible values are assign, get, add or delete, it
modifies the current settings as indicated. For more details, check the tutorial.

Return: if $args return empty current instfilters, otherwise empty
instfilterguard filterName guard
Arguments: filterName: filter name of a registered filter

guard: set of conditions to execute the filter
Description: Add conditions to guard a filter registration point. The filter is only executed, if the

guards are true. Otherwise we ignore the filter. If no guards are given, we always
execute the filter.

Return: empty string

• 

instforward methodName ?options? ?callee? ?args?
Arguments: methodName: name of forwarder method

?options?: −objscope, −methodprefix string, −default names, −earlybinding, −verbose
?callee?: named of the called command or object
?args?: arguments

Description: Register a method for the instances of a class (similar to an instproc) for forwarding
calls to a callee (target Tcl command, other object). When the forwarder method is
called, the actual arguments of the invocation are appended to the specified arguments.
In callee an arguments certain substitutions can take place:

%proc: substituted by name of the forwarder method♦ 

%self: substitute by name of the object♦ 

%1: substitute by first argument of the invocation♦ 

{%@POS value}: substitute the specified value in the argument list on position
POS, where POS can be a positive or negative integer or end. Positive
integers specify the position from the begin of the list, while negative integer
specify the position from the end.

♦ 

{%argclindex LIST}: take the nth argument of the specified list as substitution
value, where n is the number of arguments from the invocation.

♦ 

%%: a single percent.♦ 

%Tcl−command: command to be executed; substituted by result.♦ 

Additionally each argument can be prefixed by the positional prefix %@POS (note the
delimiting space at the end) that can be used to specify an explicit position. POS can be
a positive or negative integer or the word end. The positional arguments are evaluated
from left to right and should be used in ascending order. valid Options are:

−objscope causes the target to be evaluated in the scope of the object,♦ 

−methodprefix string inserts the specified prefix in front of the second
argument of the invocation,

♦ 

−default is used for default method names (only in connection with %1)♦ 

−earlybinding: look up the function pointer of the called Tcl command at
definition time of the forwarder instead of invocation time. This option should
only be used for calling C−implemented Tcl commands, no procs etc.);

♦ 

−verbose♦ 

: print the substituted command to stderr before executing

• 

See tutorial for detailed examples. Return: empty

XOTcl − Documentation −− ./doc/langRef.xotcl

Instprocs 8



instinvar invariantList
Arguments: invariantList: Body of invariants for the class
Description: Specify invariants for the class. These are inherited by sub−classes. The invariants

must hold for all instances. All assertions are a list of ordinary Tcl conditions.
Return: empty string

• 

instmixin ?args?
Arguments: ?args?: instmixin specification
Description: If $args is one argument, it specifies a list of instmixins to be set. Every instmixin must be

a defined class. If $args has more argument, the first one specifies the action. Possible
values are assign, get, add or delete, it modifies the current settings as indicated. For
more details, check the tutorial.

Return: if $args empty return current instmixins, otherwise empty

• 

instparametercmd name
Arguments: name: variable to be provided with getter/setter method
Description: Add a getter/setter command for an instance variable with the specified name. This method

is used for example by the parameter method. Example:

    Class C
    C instparametercmd x
    C c1 −x 100
    puts [c1 x]

Return: empty string

• 

instproc name ?non−pos−args?" args body ?preAssertion? ?postAssertion?
Arguments: name: instance method name

?non−pos−args?": optional non−positional arguments
args: instance method arguments
body: instance method body
?preAssertion?: optional assertions that must hold before the proc executes
?postAssertion?: optional assertions that must hold after the proc executes

Description: Specify an instance method in the same style as Tcl specifies procs.
Optionally assertions may be given by two additional arguments. Therefore, to specify only
post−assertions an empty pre−assertion list must be given. All assertions are a list of
ordinary Tcl conditions.
When instproc is called with an empty argument list and an empty body, the specified
instproc is deleted.

Return: empty string

• 

new ?−childof obj? ?args?
Arguments: ?−childof obj? ?args?: args passed to create
Description: Convenience method to create an autonamed object. E.g.:

    HTTP new 

creates ::xotcl::__#0, a subsequent call creates ::xotcl::__#1, ...
If −childof obj is specified, the new object is created as a child of the specified object.

Return: new object name

• 

parameter parameterList
Arguments: parameterList: list of parameter definitions

• 

XOTcl − Documentation −− ./doc/langRef.xotcl

Instprocs 9



Description: Specify parameters automatically created for each instance. Parameters denote instance
variables which are available on each class instance and that have a getter/setter method with
their own name. Parameters are specified in a parameter list of the form {p1 p2 ... pn}. p1 ...
pn may either be parameter names or definitions of the form {parameterName
defaultValue}. If a default value is given, that parameter is created during creation process of
the instance object, otherwise only the getter/setter method is created (and the parameter
does not exist). The getter/setter method has the same name as the parameter. It gets and
returns the parameter, if no argument is specified. With one argument, the parameter is set to
the argument value.
Example:

    Class Car −parameter {{doors 4} color}
    Car herby −doors 2 −color green 

Return: empty string
parameterclass class
Arguments: class: parameter class name
Description: Set the parameter class. The parameter class specifies how parameters are stored and

maintained internally. Per default, a method "default" is called, to set the parameter with a
default value. I.e.,

    Class Car −parameter {
      {doors 4}
    }

is a short form for

    Class Car −parameter {
      {doors −default 4}
    }

For specialized parameter classes other methods can be called, e.g.

   {doors −default 3 −updateWidget car}

Return: empty string

• 

recreate obj ?args?
Arguments: obj: obj to be recreated

?args?: arbitrary arguments
Description: Methods called upon recreation of an object. Recreate is called, when an object/class is

created, but a same−named object/class exists already. "recreate" is not called, when an
object is trying to be recreated as a class or vice versa. In these cases, recreating is realized
via destroy+create. The Methods "recreate" performs standard object initialization, per
default. May be overloaded/−written. It calls another method cleanup which handles actual
cleanup of the object during next. That means, if you overload recreate, in the pre−part the
object still contains its old state, after next it is cleaned up.

Return: obj name

• 

superclass classList
Arguments: classList: ?list of classes?
Description: Specify super−classes for a class. "superclass" changes the list of superclasses dynamically

to classList. The method returns the current value of superclass, when it is called
without arguments.

• 

XOTcl − Documentation −− ./doc/langRef.xotcl

Instprocs 10



Return: if classList is not specified return superclass(es), otherwise empty
unknown ?args?
Arguments: ?args?: arbitrary arguments
Description: Standard unknown mechanism. This mechanism is always triggered when XOTcl does not

know a method called on an object. Supposed that there is no method with the called name,
XOTcl looks up the method "unknown" (which is found on the Class Object) and executes it.
The standard unknown−mechanism of XOTcl calls create with all arguments stepping one
step to the right; in the general case:

    ClassName create ClassName ?args?

Unknown can be overloaded in user−defined subclasses of class.
Return: Standard unknown mechanism returns result of create

• 

Procs

__unknown name
Arguments: name: name of class to be created
Description: This method is called, whenever XOTcl references a class, which is not defined yet. In

the following example: Class C −superclass D D is not defined. Therefore
Class __unknown D is called. This callback can be used to perform auto−loading
of classes. After this call, XOTcl tries again to resolve D. If it succeeds, XOTcl will
continue; otherwise, an error is generated.

This method is called on mixin/instmixin definition calls, istype, ismixin, class,
superclass and parameterclass

Return: empty string

• 

Class: Object

Class: Class
Procs/Instprocs: abstract, append, array, autoname, check, class, cleanup, configure, contains, copy, destroy,
eval, exists, extractConfigureArg, filter, filterguard, filtersearch, forward, getExitHandler, hasclass, incr, info,
instvar, invar, isclass, ismetaclass, ismixin, isobject, istype, lappend, mixin, move, noinit, parametercmd, proc,
procsearch, requireNamespace, set, setExitHandler, subst, trace, unset, uplevel, upvar, volatile, vwait.

Description: This class holds the pre−defined methods available for all XOTcl objects. All these methods
are also available on classes.

Instprocs

abstract methtype methodName arglist
Arguments: methtype: instproc or proc

methodName: name of abstract method
arglist: arguments

Description: Specify an abstract method for class/object with arguments. An abstract method
specifies an interface and returns an error, if it is invoked directly. Sub−classes or

• 

XOTcl − Documentation −− ./doc/langRef.xotcl

Procs 11



mixins have to override it.
Return: error
append varName args
Arguments: varName: name of variable

args: arguments to append
Description: Append all of the value arguments to the current value of variable varName. Wrapper

to the same named Tcl command (see documentation of Tcl command with the same
name for details).

Return: empty string

• 

array opt array ?args?
Arguments: opt: array option

array: array name
?args?: args of the option

Description: This method performs one of several operations on the variable given by arrayName. It
is a wrapper to the same named Tcl command (see documentation of Tcl command
with the same name for details).

Return: diverse results

• 

autoname ?|? name
Arguments: ?|?: Optional modifiers:

'−instance' makes the autoname start with a small letter.
'−reset' resets the autoname index to 0.
name: base name of the autoname

Description: autoname creates an automatically assigned name. It is constructed from the base name
plus an index, that is incremented for each usage. E.g.:

    $obj autoname a

produces a0, a1, a2, ... Autonames may have format strings as in the Tcl 'format'
command. E.g.:

    $obj autoname a%06d

produces a000000, a000001, a000002, ...
Return: newly constructed autoname value

• 

check options
Arguments: options: none, one or more of: (?all? ?pre? ?post? ?invar? ?instinvar?)
Description: Turn on/off assertion checking. Options argument is the list of assertions, that should

be checked on the object automatically. Per default assertion checking is turned off.
Examples:

    o check {};         # turn off assertion checking on object o
    o check all;        # turn on all assertion checks on object o
    o check {pre post}; # only check pre/post assertions

info check introspects check options.
Return: empty string

• 

class newClass• 

XOTcl − Documentation −− ./doc/langRef.xotcl

Instprocs 12



Arguments: newClass: ?new class?
Description: Changes the class of an object dynamically to newClass. The method returns the

current value of class, when it is called without arguments.
Return: if newClass is not specified return class, otherwise empty
cleanup ?args?
Arguments: ?args?: Arbitrary arguments passed to cleanup
Description: Resets an object or class into an initial state, as after construction. Called during

recreation process by the method 'recreate'
Return: empty string

• 

configure ?args?
Arguments: ?args?: '−' method calls
Description: Calls the '−' (dash) methods. I.e. evaluates arguments and calls everything starting with

'−' (and not having a digit a second char) as a method. Every list element until the next
'−' is interpreted as a method argument. configure is called before the constructor
init during initialization and recreation. In the following example, the variable set is
called via configure before init:

    Object o −set x 4

The method configure can be called with the dash−notation at arbitrary times:

    o configure −set x 4

Note, that if '−' is followed by a numerical, the arument is interpreted as a negative
number (and not as a method). If a value of a method called this way starts with a "−",
the call can be placed safely into a list (e.g. "Class c [list −strangearg −a−] −simplearg
2").

See also create.
Return: number of the skipped first arguments

• 

contains ?−withnew? ?−object? ?−class? cmd
Arguments: ?−withnew?: Option to overload new to create new objects within the specified object.

Per default, this option is turned on.
?−object?: object, in which the new objects should be created. The default is the
object, for which contains>/tt> was called.
?−class?: In combination with option −object: If the specified object does not exist,
create it from the specified class. The default is ::xotcl::Object
cmd: Tcl command to create multiple objects

Description: This method can be used to create nested object structures with little syntactic
overhead. The method changes the namespace to the specified object and creates
objects there. Optionally, a different object scope can be specified and creating new
objects in the specified scope can be turned off. The following command creates a
three rectangles, containing some points.

Class Point −parameter {{x 100} {y 300}}
Class Rectangle −parameter {color}

  Rectangle r0 −color pink −contains {
    Rectangle r1 −color red −contains {

• 

XOTcl − Documentation −− ./doc/langRef.xotcl

Instprocs 13



      Point x1 −x 1 −y 2
      Point x2 −x 1 −y 2
    }
    Rectangle r2 −color green −contains {
      Point x1
      Point x2
    }
  }

The resulting object structure looks like in the folloing example (simplified).

   ::r0
   ::r0::r1
   ::r0::r1::x1
   ::r0::r1::x2
   ::r0::r2
   ::r0::r2::x1
   ::r0::r2::x2

Return: number of the skipped first arguments
copy newName
Arguments: newName: destination of copy operation
Description: Perform a deep copy of the object/class (with all information, like class, parameter,

filter, ...) to "newName".
Return: empty string

• 

destroy ?args?
Arguments: ?args?: Arbitrary arguments passed to the destructor
Description: Standard destructor. Can be overloaded for customized destruction process. Actual

destruction is done by instdestroy. "destroy" in principal does:

    Object instproc destroy args {
      [my info class] instdestroy [self]
    }

Return: empty string

• 

eval args
Arguments: args: cmds to eval
Description: Eval args in the scope of the object. That is local variables are directly accessible as Tcl

vars.
Return: result of cmds evaled

• 

extractConfigureArg al name ?cutTheArg?
Arguments: al: Argument List Name

name: Name of the configure argument to be extracted (should start with '−')
?cutTheArg?: if cutTheArg not 0, it cut from upvar argsList, default is 0

Description: Check an argument list separated with '−' args, as for instance configure arguments,
and extract the argument's values. Optionally, cut the whole argument.

Return: value list of the argument

• 

exists var
Arguments: var: variable name
Description: Check for existence of the named instance variable on the object.
Return: 1 if variable exists, 0 if not

• 

filter ?args?• 

XOTcl − Documentation −− ./doc/langRef.xotcl

Instprocs 14



Arguments: ?args?: filter specification
Description: If $args is one argument, it specifies a list of filters to be set. Every filter must be an

XOTcl proc/instproc within the object scope. If $args it has more argument, the first
one specifies the action. Possible values are assign, get, add or delete, it
modifies the current settings as indicated. For more details, check the tutorial.

Return: if $args return empty current filters, otherwise empty
filterguard filterName guard
Arguments: filterName: filter name of a registered filter

guard: set of conditions to execute the filter
Description: Add conditions to guard a filter registration point. The filter is only executed, if the

guards are true. Otherwise we ignore the filter. If no guards are given, we always
execute the filter.

Return: an empty string

• 

filtersearch methodName
Arguments: methodName: filter method name
Description: Search a full qualified method name that is currently registered as a filter. Return a list

of the proc qualifier format: 'objName|className proc|instproc methodName'.
Return: full qualified name, if filter is found, otherwise an empty string

• 

forward methodName ?options? ?callee? ?args?
Arguments: methodName: name of forwarder method

?options?: −objscope, −methodprefix string, −default names, −earlybinding, −verbose
?callee?: named of the called command or object
?args?: arguments

Description: Register an object specific method (similar to a proc) for forwarding calls to a callee
(target Tcl command, other object). When the forwarder method is called, the actual
arguments of the invocation are appended to the specified arguments. In callee an
arguments certain substitutions can take place:

%proc: substituted by name of the forwarder method♦ 

%self: substitute by name of the object♦ 

%1: substitute by first argument of the invocation♦ 

{%@POS value}: substitute the specified value in the argument list on position
POS, where POS can be a positive or negative integer or end. Positive
integers specify the position from the begin of the list, while negative integer
specify the position from the end.

♦ 

{%argclindex LIST}: take the nth argument of the specified list as substitution
value, where n is the number of arguments from the invocation.

♦ 

%%: a single percent.♦ 

%Tcl−command: command to be executed; substituted by result.♦ 

Additionally each argument can be prefixed by the positional prefix %@POS (note the
delimiting space at the end) that can be used to specify an explicit position. POS can be
a positive or negative integer or the word end. The positional arguments are evaluated
from left to right and should be used in ascending order. valid Options are:

−objscope causes the target to be evaluated in the scope of the object,♦ 

−methodprefix string inserts the specified prefix in front of the second
argument of the invocation,

♦ 

−default is used for default method names (only in connection with %1)♦ 

−earlybinding: look up the function pointer of the called Tcl command at♦ 

• 

XOTcl − Documentation −− ./doc/langRef.xotcl

Instprocs 15



definition time of the forwarder instead of invocation time. This option should
only be used for calling C−implemented Tcl commands, no procs etc.);
−verbose♦ 

: print the substituted command to stderr before executing

See tutorial for detailed examples. Return: empty
hasclass ?className?
Arguments: ?className?: name of a class to be tested
Description: Test whether the argument is either a mixin or instmixin of the object or if it is on the class

hierarchy of the object. This method combines the functionalities of istype and ismixin.
Return: 1 or 0

• 

incr varName ?increment?
Arguments: varName: variable name

?increment?: value to increment
Description: Increments the value stored in the variable whose name is varName. The new value is stored

as a decimal string in variable varName and also returned as result. Wrapper to the same
named Tcl command (see documentation of Tcl command with the same name for details).

Return: new value of varName

• 

info args
Arguments: args: info options
Description: Introspection of objects. The following options can be specified:

objName info args method: Returns the arguments of the specified proc (object
specific method).

• 

objName info body method: Returns the body of the specified proc (object
specific method).

• 

objName info class: Returns the name of the class of the current object.• 

objName info children ?pattern?: Returns the list of aggregated objects with
fully qualified names if pattern was not specified, otherwise it returns all children
where the object name matches the pattern.

• 

objName info commands ?pattern: Returns all commands defined for the object
if pattern was not specified, otherwise it returns all commands that match the pattern.

• 

objName info default method arg var: Returns 1 if the argument arg of the
proc (object specific method) method has a default value, otherwise 0. If it exists the
default value is stored in var.

• 

objName info filter: Returns a list of filters. With −guard modifier all filterguards
are integrated (  objName info filter −guards). With −order modifier the
order of filters (whole hierarchy) is printed.

• 

objName info filterguard name: Returns the guards for filter identified by
name.

• 

objName info forward ?−definition name? ?pattern?: Returns the list
of forwarders. One can call this method either without the optional arguments, or with the
pattern or with −definition name. When the pattern is specified only the
matching forwarders are returned. When the definition option is used together with a
name of a forwarder, the definition of the forwarder with all flags is returned in a way that
can be used e.g. for registering the forwarder on another object.

• 

objName info hasNamespace: From XOTcl version 0.9 on, namespaces of objects
are allocated on demand. hasNamespace returns 1, if the object currently has a namespace,
otherwise 0. The method requireNamespace can be used to ensure that the object has

• 

• 

XOTcl − Documentation −− ./doc/langRef.xotcl

Instprocs 16



a namespace.
objName info info: Returns a list of all available info options on the object.• 

objName info invar: Returns object invariants.• 

objName info methods: Returns the list of all methods currently reachable for
objName. Includes procs, instprocs, cmds, instcommands on object, class hierarchy and
mixins. Modifier −noprocs only returns instcommands, −nocmds only returns procs.
Modifier −nomixins excludes search on mixins.

• 

objName info mixin ?−order? ?−guard? ?pattern?: Returns the list of
mixins of the object. With −order modifier the order of mixins (whole hierarchy) is
printed. If −guard is specified, the mixin guards are returned. If pattern is specified
and it contains wildcards, all matching mixins are returned. If pattern does not contain
wildcards, either the fully qualified name is returned, or empty, if no match exists.

• 

objName info nonposargs methodName: Returns non−positional arg list of
methodName

• 

objName info parametercmd ?pattern?: Returns a list of registered
parametercmds the object (or empty if there are none). If pattern is specified, only the
matching parametercmds are returned.

• 

objName info parent: Returns parent object name (or "::" for no parent), in fully
qualified form.

• 

objName info post methodName: Returns post assertions of methodName.• 

objName info pre methodName: Returns pre assertions of methodName.• 

objName info procs ?pattern?: Returns all procs defined for the object if
pattern was not specified, otherwise it returns all procs that match the pattern.

• 

objName info precedence ?−intrinsic? ?pattern?: Returns all classes
in the precedence order from which the specified object inherits methods. If the flag
−intrinsic is specified only the intrinsic classes (from the class hierarchy) are
specified. If the flag is not specified, the returned list of classes contains the mixin and
instmixin classes as well as the classes of the superclass chain in linearized order (i.e.,
duplicate classes are removed). If the pattern is specified, only matching classes are
returned.

• 

objName info vars ?pattern?: Returns all variables defined for the object if
pattern was not specified, otherwise it returns all variables that match the pattern.

• 

Return: Value of introspected option as a string.
instvar v1 ?v2...vn?
Arguments: v1: name of instance variable

?v2...vn?: optional other names for instance variables
Description: Binds an variable of the object to the current method's scope. Example:

    kitchen proc enter {name} {
      my instvar persons
      set persons($name) [clock seconds]
    }

Now persons can be accessed as a local variable of the method.
A special syntax is: {varName aliasName} . This gives the variable with the name
varName the alias aliasName. This way the variables can be linked to the methods
scope, even if a variable with that name already exists in the scope.

Return: empty string

• 

invar invariantList
Arguments: invariantList: Body of invariants for the object

• 

XOTcl − Documentation −− ./doc/langRef.xotcl

Instprocs 17



Description: Specify invariants for the objects. All assertions are a list of ordinary Tcl conditions.
Return: empty string
isclass ?className?
Arguments: ?className?: name of a class to be tested
Description: Test whether the argument (or the Object, if no argument is specified) is an existing class or

not.
Return: 1 or 0

• 

ismetaclass ?metaClassName?
Arguments: ?metaClassName?: name of a metaclass to be tested
Description: Test whether the argument (or the Object, if no argument is specified) is an existing

metaclass or not.
Return: 1 or 0

• 

ismixin ?className?
Arguments: ?className?: name of a class to be tested
Description: Test whether the argument is a mixin or instmixin of the object.
Return: 1 or 0

• 

isobject objName
Arguments: objName: string that should be tested, whether it is a name of an object or not
Description: Test whether the argument is an existing object or not. Every XOTcl object has the

capability to check the object system.
Return: 1 or 0

• 

istype className
Arguments: className: type name
Description: Test whether the argument is a type of the object. I.e., 1 is returned if className is either the

class of the object or one of its superclasses.
Return: 1 or 0

• 

lappend varName args
Arguments: varName: name of variable

args: elements to append
Description: Append all the specified arguments to the list specified by varName as separated elements

(typically separated by blanks). If varName doesn't exist, it creates a list with the specified
values (see documentation of Tcl command with the same name for details).

Return: empty string

• 

mixin ?args?
Arguments: ?args?: mixin specification
Description: If $args is one argument, it specifies a list of mixins to be set. Every mixin must be a

defined class. If $args has more argument, the first one specifies the action. Possible values
are assign, get, add or delete, it modifies the current settings as indicated. For more
details, check the tutorial.

Return: if $args empty return current mixins, otherwise empty

• 

move newName
Arguments: newName: destination of move operation
Description: Perform a deep move of the object/class (with all information, like class, parameter, filter, ...)

to "newName". Note that move is currently implemented as a copy plus subsequent destroy
operation.

• 

XOTcl − Documentation −− ./doc/langRef.xotcl

Instprocs 18



Return: empty string
parametercmd name
Arguments: name: variable to be provided with getter/setter method
Description: Add a getter/setter for an instance variable with the specified name as a command for the

obj. Example:

    Object o
    o parametercmd x
    o x 100
    puts [o x]

Return: empty string

• 

noinit
Description: flag that constructor (method init) should not be called. Example:

    Class C
    C instproc init {} {puts hu}
    C c1 −noinit

The object c1 will be created without calling the constructor. This can be used to draw a
snapshot of an existing object (using the serializer) and to recreate it in some other context in
its last state.

Return: empty string

• 

proc name ?non−pos−args? args body ?preAssertion? ?postAssertion?
Arguments: name: method name

?non−pos−args?: optional non−positional arguments
args: method arguments
body: method body
?preAssertion?: optional assertions that must hold before the proc executes
?postAssertion?: optional assertions that must hold after the proc executes

Description: Specify a method in the same style as Tcl specifies procs.
Optionally assertions may be specified by two additional arguments. Therefore, to specify
only post−assertions an empty pre−assertion list must be given. All assertions are a list of
ordinary Tcl conditions.
When instproc is called with an empty argument list and an empty body, the specified
instproc is deleted.

Return: empty string

• 

procsearch procName
Arguments: procName: simple proc name
Description: Search which method should be invoked for an object and return the fully qualified name of

the method as a list in proc qualifier format: 'objName|className
proc|instproc|forward|instforward|parametercmd|instparametercmd|cmd|instcmd
methodName'. The proc qualifier format reports the command used to create the method.
The only exception is instcmd and cmd, which refer to commands implemented in C. E.g.,

    o procsearch set 

returns

::xotcl::Object instcmd set

• 

XOTcl − Documentation −− ./doc/langRef.xotcl

Instprocs 19



.
Return: fully qualified name of the searched method or empty string if not found
requireNamespace
Description: The method requireNamespace can be used to ensure that the object has a namespace.

Namespaces are created automatically by XOTcl, when e.g. an object has child objects
(aggregated objects) or procs. The namespace will be used to keep instance variables, procs
and child objects. To check, whether an object currently has a namespace, info
hasNamespace can be used. Hint: In versions prior to XOTcl 0.9 all XOTcl objects had
their own namespaces; it was made on demand to save memory when e.g. huge numbers of
objects are created. requireNamespace is often needed when e.g. using Tk widgets
when variables are to be referenced via the namespace (with ... −variable
[self]::varName ...).

Return: empty string

• 

set varName ?value?
Arguments: varName: name of the instance variable

?value?: optional new value
Description: Set an instance variable in the same style as Tcl sets a variable. With one argument, we

retrieve the current value, with two arguments, we set the instance variable to the new value.
Return: Value of the instance variable

• 

subst options string
Arguments: options: ?−nobackslashes? ?−nocommands? ?−novariables?

string: string to be substituted
Description: Perform backslash, command, and variable substitutions in the scope of the given object (see

documentation of Tcl command with the same name for details).
Return: substituted string

• 

trace varName
Arguments: varName: name of variable
Description: Trace an object variable (see documentation of Tcl command with the same name for

details).
Return: empty string

• 

unset ?−nocomplain? v1 ?v2...vn?
Arguments: ?−nocomplain?: possible error messages are suppressed

v1: Variable to unset
?v2...vn?: Optional more vars to unset

Description: The unset operation deletes one or optionally a set of variables from an object.
Return: empty string

• 

uplevel ?level? command ?args?
Arguments: ?level?: Level

command ?args?: command and arguments to be called
Description: When this method is used without the optional level, it is a short form of the Tcl command

    uplevel [self callinglevel] command ?args?

When it is called with the level, it is compatible with the original Tcl command.
Return: result of the command

• 

upvar ?level? otherVar localVar ?otherVar localVar?• 

XOTcl − Documentation −− ./doc/langRef.xotcl

Instprocs 20



Arguments: ?level?: Level
otherVar localVar: referenced variable and variable in the local scope
?otherVar localVar?: optional pairs of referenced and local variable names

Description: When this method is used without the optional level, it is a short form of the Tcl command

    upvar [self callinglevel] otherVar localVar ?...?

. When it is called with the level, it is compatible with the original Tcl command.
Return: result of the command
vwait varName
Arguments: varName: name of variable
Description: Enter event loop until the specified variable is set (see documentation of Tcl command with

the same name for details).
Return: empty string

• 

volatile
Arguments: :
Description: This method is used to specify that the object should be deleted automatically, when the

current Tcl−proc/object−proc/instproc is left. Example:

    set x [Object new −volatile]

Return: empty string

• 

Procs

getExitHandler
Description: Retrieve the current exit handler procedure body as a string.
Return: exit handler proc body

• 

setExitHandler body
Arguments: body: procedure body
Description: Set body for the exit handler procedure. The exit handler is executed when XOTcl is

existed or aborted. Can be used to call cleanups that are not associated with objects
(otherwise use destructor). On exit the object destructors are called after the
user−defined exit−handler.

Return: exit handler proc body

• 

Back to index page.

XOTcl − Documentation −− ./doc/langRef.xotcl

Procs 21


	XOTcl - Documentation -- ./doc/langRef.xotcl

