MTsort Language - EDOCO033

John Cresswell

Janet Sampson

MTsort Language - EDOCO033

John Cresswell
Janet Sampson

Published 27 Jan 2006

Abstract

This manual describes the sort language. It can currently be used to sort a wide selection of event formats, in-
cluding Eurogam, Euroball, GammaSphere, IN2P3, Goosy, Oak Ridge, Exogam and GREAT format data. More
features and data formats are being added according to users' requirements.

Table of Contents

g1 [0t [' o PP 1
FEEADBEK ... 2

[z =) T L= 0] 1 3
LT s o I ot [4

[N o) 7= (o o PP 5

FIIE TNCIUSION ...ttt e et e et e eaa e eees 6

el O 5 TSP 7
SINGlE Parameter FOMMALcouuiiiiieii e e e e e e e e e e e e ean e eaes 8
Group Parameter FOIMELc.uiiiiieii et e e e enes 9
FTRIGGERS ... e ettt 11
el I PSP 12
0] 1110 0 =PRI 13
Pre-defined SOMWOITSuuiii e e e e et e e eeanns 14

L (=P PTPPPTTUUPPTRPPN 15
BIIMASK BLES ... eeeeee ettt aaans 15

ID QAES ...ttt 15

2D GBS .ttt e 16

EHIPLCEI GALESe ettt et et e e e 16

DALA AITAY S it ittt ettt et 18

RV L0 TC = 1 = V£ 18

€T (X - YA T PSP RPPT PP 19

GIN BITAYS ettt ettt ettt ettt e e et et e s 19

ATTAYS OF @ITEYS ...ttt ettt e et e et et e e e et e e e eena e eeeees 20

S O I PP 21
oSN O 1 A PP 22
(D= o= = 0] L PR 23
L0100 =0 £ 25
FCOMMANDS .ottt e e e e e e e e e e e e et e e e e e e e e e a e e e a e 26
List Of COMMANGSnieti et e e et e et e e et e e eanaeees 27
ParBMELEE LISES ... ettt e ettt e e ae 28
Simple Spectrum update COMMBNGSoeuueiiie e e e e e e e e et eeaaaeee 29
Indexed Spectrum update COMMANASocvuiiiiii e e e e e e e 31

o T £ o0 1 1o 32

List generation/extraCtion COMMANGSuuiiiiitiiiiiii e 33
CreateliSt COMMIBNGconiii e et et e e e e e e e et e e et e e eanaaee 34
COPYIISE COMIMENG ... ettt e e et e e et et e e e e e et e e et e e eanaee 36
A= o e 0 7= 1o [P 37
[I0T0] o1 n = oA o001 1711 1o 39
If...else... command (single sortword environmMeNt)}c..evveiiiiiieiiiii e 40
Validation test operator (WVALID)uuiiiiiieeei e 40
Comparison operators (EQ,NE,GE,LE,GT,LT) ..uuuiiiiiiiiieiiiiiieeee e 40

Filtering operators (PASSES,FAILS)cuuiiiieiii e 41

Masking operator (MASKEDBY)uuiiiiiiiii e e e e e e e e aens 42
Gate-testing operator (GATEDBY) ..ucivuiiiiiieei e e e e e 42
Loopif...loopfail... command (parameter-list environment)}oooooviiviiiiniiiiiiinne e, 44
Validation test operator (WVALID)uuiiiiiieeei e 45
Comparison operators (EQ,NE,GE,LE,GT,LT) o.uuiiiiiiiiieiiiiieeee e 45

Filtering operators (PASSESFAILS)cuiiiiiiiii e 45

Masking operator (MASKEDBY)uuiiiiiiiii e e e e e e e e aens 46
Gate-testing operator (GATEDBY) ..uiviiiiiii e e e e e 46

S o Ao 21027 o 48

L€ To] (o o{0] 171011 7= 4 1o RN PRI 50
ATITNMELIC OPEIAIIONS ...ttt e e et e ettt e e e et e e e eba e eeees 51
ATITNMELIC OPEIALOISieeiiie ettt ettt e e e et e e e eaaaaees 51

MEENS FUNCLIONSiiieiee et e et e e e b e e e aeanas 51

ComMANd FUNCLIONSeuuiiiiii et et e et e e e e e e e e 51

L7 T 1o o1 0= oo 53

MTsort Language - EDOC033

INValidate COMMENGcoueii e et e e e e e e e e e e ean s 56
Groupfilter COMMENGcouniiie et et e et e e e e et e e et e eaaaaees 57

L@ o /= iole]001010T= o o PP PPTTTTR 58
ROULINES ..ottt e ettt e e e e et et e e e n e e e e et e e nnrn e nn e e e e e e e nnnne 59

(o @] 1111 7= o 60
SYNCAMONIZALION ..o et 61

DOl00P COMMEND ...ttt ettt ettt et e et et e e e e et e e e ena e e eenanns 62
OULPUL COMMIBNG ...ttt et e et e ettt e e et e e et e et ta e e e e e et e eetnaeeanaees 63
ENdevent COMMENGcooiiiiiiiiie ettt ettt e e e e e e b e e e e e eennnees 65

ENd COMMENG ...ttt et e e e e e e e e n e n e e e e e e ennnne 66
LTS oo 11100 67
*RUNFILES (Offline @nalySIS ONIY)coiiiiiiiiiiiie et 68
N O gL 1 1 | T 70
RESEIVEU WOTTSeeeti ettt ettt et e e e e e e e 71
Predefined SOMWOIASccoiieiiiii e e e e e e e e e e eennees 72
MAXIMUM VAIUBSeiiii ittt e e ettt nn e e e e e e e e nr e r e e e e e e ennnne 73

B. DaAtafile @XAmMPIESo 74
Eurogam phase 2 QUEOGAIN SOceeeeieieii ettt eaans 75
AULO-gaiNEd COIMEILION SOMceeitieieii et e e et e et eeeebe e eenes 79

L@ U= 0 "o o 81

L@ 0 191 o o SN 83

Introduction

In order to run a sort the user supplies afile of sorting instructions written in the sort language. This
data file should contain a description of the experimental setup, the number of spectra (histograms)
required and a set of commands to be applied to each event being sorted. The sort package checks
the syntax of these instructions and translates them into a more low level language, i.e. C. This
trangdation is then compiled to produce a sort program based on the user's original sort instructions.

If there are mistakes in your sortfile the sort package reports them as warnings or errors when you
try to set up a sort. Warning and error messages are given with the line number and a copy of the er-
roneous line.

Introduction

Feedback

Feedback is most certainly welcome for this document. Send your additions, comments and criti-
cismsto the following email address: <support @s. ph. | i v. ac. uk>.

Data File Format

Data File Format

General Structure

The user-supplied data file is divided into several sections. Each section is identified by an associ-
ated starword.

The recognised starwords are;

* *FORMATS

* *TRIGGERS (optiona)

* *DATA (optional)

» *SPECTRA (optional)

e *AUTOGAIN (optional)

» *COMMANDS (optiona)

* *FINISH (denotes end of sortfile)
* *TRIGGERS (optiona)

and should appear in the data file in the above order. Items in the data file are in free format separ-
ated by spaces. Each starword section is described in afollowing chapter.

All starwords, commands and other sort language statements are expected on a new line. Any
statement which exceeds a single line may just be continued on the following line. There are no line
continuation symbols.

Names used may contain one or two components depending on whether the quantity is a group

name or not. Each component must commence with an alphabetic character and may be up to 16
charactersin length. Only aphanumeric and underscore”_" characters are allowed.

All names used for single and group parameters, sortwords, items, arrays, maps, parameter lists and
routine arguments must be unique, e.g. a parameter list may not have the same name as a sortword.

Numerical values should be specified as appropriate to the command:

* integer (in therange -32768 to 32767)
« real (in the range 10 to 10%)
e.g. 2.143 2376. 936.52E5 1.509E-23
* binary (up to 16 bhits) e.g. %1011101101
» hexadecimal (in the range FFFF to 7FFF) e.g. @0065
Reserved wor ds consist of all keywords and maths function names and cannot be used as other sort
program names. See Appendix A for alist of al reserved words.

Comments may be placed anywhere in the text. Any text following an exclamation mark ! or
double forward slash // up to end-of-line isignored by the setup procedure.

Data File Format

Notation

The convention in this manual is to show triangular brackets enclosing a name to indicate that a
guantity described by the name must be supplied, e.g. <sortword>.

Optional quantities are enclosed in double square brackets, e.g. # optvar #.
Theletter "r*' following a quantity indicates that the item may be repeated.
Alternative quantities are denoted by |, so <a>| indicates either <a> or .

In the commands section wherever <statements> is used it refers to either a smple statement (single
command) or acomplex statement (group of commands enclosed within curly braces), i.e.

<st at enent s> -> <singl e-command>

<si ngl e- conmand>
<si ngl e- conmmand>

o

Data File Format

File Inclusion

| NCLUDE <filename>

This statement allows other text files to be included in any section of the datafile. Only one level of
inclusion is allowed, i.e. included files may not contain any INCL UDE statements.

*FORMATS

This section is used to specify all experimental parameters and any other parameters required during
event processing. Parameters can be specified in two different formats depending on how they areto
be accessed: either as group or single parameter format.

*FORMATS

Single Parameter Format

<single-parameter-name> <14-bit address>

In single parameter format the 14-bit address of the parameter needs to be specified.

Example

* FORMATS
GE13_E2 @10D
sil enal 513

This address must be unique and not lie within the address range of any group format names [See
the Eurogam document EDOCO014 (Event Builder + Sorter Control) for further information].

Thisformat is useful for sorting non-Eurogam format data.

*FORMATS

Group Parameter Format

<group-name> # [<group-number-range> | # (<item-list>)

where <group-number-range> is a subset of the allowed group numbers (0 to 1023) enclosed in [] brack-
ets, and takes the form:

<lower-limit>

<lower-limit> : <upper-limit>

<lower-limit>, <next-lower-limit> : <next-upper-limit> , ...

<lower-limit> : <upper-limit>, <next-lower-limit> : <next-upper-limit>, ...

and <item-list> is alist of the items contained within a group separated by commas, where each item con-
sists of aname followed by an optional bit field:

<item-name> [: <number-of-bits>]

Group numbers less than 256 correspond to standard group format; group numbers of 256 upwards
correspond to extended group format. Within any one group the format must be the same, i.e. group
numbers must be in one format range only (0--255 or 256--1023). A group consists of al the para-
meters associated with one device, e.g. a germanium detector, would have an associated energy
word, ballistic deficit correction words, etc. The structure of all devices having the same sets of as-
sociated parameters can be specified concisely using group format,

Example

* FORMATS
GH[2, 4: 10, 19, 23: 26] (E1, E2, TAC, TACBD)
CLOVER] 51: 74] (BGOE, BGOT, BGOP,
Al, A2, A3, Ad,
B1, B2, B3, B4,
Cl, C2, C3, C4,
D1, D2, D3, D4)
CLOVERL[101: 124] (E20, EATAGL: 3, E4DAT1:13)
CLOVER2[151: 174] (E20, EATAGL: 3, EADAT1: 13, EATAG2: 3, FEADAT2: 13)

where the group name GE represents a group type consisting of 4 items: E1, E2, TAC and
TACBD. defined for group numbers 2,4,5,6,7,8,9,10,19,23,24,25,26.

CLOVER has 19 items defined for group numbers 51 to 74 inclusive, whereas CLOVER1 and
CLOVER?2 are examples of groups which use bit fields to specify sections of the item data words
for ease of accessin the * COM M ANDS section.

Within the commands section the syntax used to refer to a single item of a particular group would
be:

<group-name> # <group-number> # . <item-name>

where <group-number> need only be specified if a range of group numbers have been defined for
<group-name>.

Example

*FORMATS

GE[13] . E1

would refer toitem E1 of group 13.

Example

CLOVER[153] . EATAG2

would refer to the item EATAG2, i.e. to the top 3 bits of the third data word, of group 153.

If only one group number is defined for a single group name, in *FORMATS, then it may be refer-
enced in the commands section without specifying the group humber, e.g.

Example

TRl 255] (S1, S2)

would be referenced as:

Example

TRl G S2

to access the second item of group TRIG.

10

*TRIGGERS

This optional section is provided for compatibility with non-Eurogam format data.

<trigger-number> [< adc-name>]r
where <trigger-number> is in the range 0 to 64.

For each trigger used the list of associated adcs should be specified. e.g.

Example

* FORVATS

GEl 1

GE2 2

GE3 3

GE4 4

GE5 5

* TRI GGERS

24 CE1 GE2 CGE3 GE4 GBS

specifies that the event data words GEL, ..., GES are declared as single parameters and are associ-
ated with trigger number 24.

11

*DATA

Sort variables and other program data are defined in this section.

12

*DATA

Sortwords

Sortwords are variables used within the commands section to pass values between commands. They
may be of type word, long, longlong or float. Long longlong and float types must be explicitly de-
clared in this section. Any undeclared variables in the commands section are assumed to be of type
word. Sortwords are not limited in scopei.e. they are recognised in the main commands section and
all routines.

If asortword is defined in this section and initialised with a starting value, then the sortword is con-
sidered global. This has the effect of keeping its value across events. Sortwords are normally un-
defined until first usein an event.

WORD <name> # = <integer-value> # ...

LONG <name> # = <integer-value> # ...

L ONGLONG <name> # = <integer-value> # ...
FLQOAT <name> # = <floating-point-value> # ...

wher e

WORD decl ares a 16-bit integer,

LONG a 32-bit integer

LONGLONG a 64-bit integer

and FLOAT a 32-bit real.

IAn optional initialisation value may be specified; if omtted it
wi || default to zero.

Example

WORD COUNTER1=1 COUNTER2=1
FLOAT Pl =3. 14159

declares two 16-bit integer variables COUNTER1 and COUNTER2 both initialised to 1 and one
32-hit floating point variable PI initialised to 3.14159.
Initialisation occurs once at the start of each sort program run.

If aWORD variableisto be output from the commands section using the OUTPUT command then
it must be defined with an associated address:

WORD <name> # = <integer value> # AT <14-hit-address>

The address is neccessary for word variables to be output in Eurogam format, i.e. a data word with a
14-bit address, so that they can be re-sorted later as pseudo-adc words. The address must lie in the
range 0 to 16383 (21%-1) and not coincide with any addresses assigned in the *FORM AT S section.

Example

WORD GAVA AT @A

would define the word GAM A with hexidecimal address A.

13

*DATA

Pre-defined Sortwords

The following sortwords have predetermined usage and value:

RANDOM
IRANDOM

GATE

WORDX

WORDY

STREAM
RUNFILE_NUMBER

BLOCK_NUMBER

LOOP

floating point sortword, random value between 0.0 and 1.0
integer sortword, random value between 0 and 32767

see |F... and LOOPIF..MASKEDBY|GATEDBY commands
see LOOPIF... command

see LOOPIF... command

Usualy set =1

runfile number of currently sorted tape (1 for first file, etc.)

current block number in currently sorted runfile

no longer used, see doloop command

14

*DATA

Gates

Sets of gates may be defined here for later use in the commands section through which to filter the
event-by-event data. If a data word being tested matches a particular gate condition it is said to pass
that particular gate.

Bitmask, 1D and 2D gates are stored as 8-hit lookup maps. Elliptical gates are stored as lists of co-
ordinates and axes. When a sortword value is tested against a gate in the commands section it will
pass either zero or one of the gates in the map. The gate number passed will be stored in the re-
served variable GATE

Bitmask gates

A set of bitmask gates consists of one bit pattern per gate. Within a set of gates earlier gate defini-
tions have precedence over later ones. This means that in the commands section if the same value
would pass more than one gate out of a set then the earliest gate defined would be the one passed.

GATES MASK <bitmask-gate-set-name>

<bitmaskl> <bitmask2> ... <bitmask >
ngates

Example

GATES MASK BI TVAPL
240000 %©1000 %0100 %0010 %©0001

Each data item consists of a 16-bit mask and represents one gate. A value will pass a gate if all the
bits set in the 16-bit value are also set in the 16-bit mask of that gate.

Within the commands section a value will pass a gate if it fallsin between the lower and upper lim-
its (inclusive) of that gate.

1D gates

A 1D gate-map consists of one or more pairs of values. The range of values in between each pair
(inclusive) defines a single gate. Within a set of gates successive gates in a 1D set have precedence
over earlier ones. This means that in the commands section if a value would pass more than one gate
out of a set then the latest such gate defined would be the one passed.

GATES 1D <1D-gate-map-name> [< x-range >]
(<low-limit> <high-limit>)
(<low-limit> <high-limit>).,

(<low-limit> <high-limit>)

where <x-range> is specified%s:

<lower-limit> : <upper-limit>

or

<range>

where <lower-limit> would be set to zero and <upper-limit> would be equal to <range> minus 1.

Example

15

*DATA

GATES 1D BANDI[O: 511]
(123 126) (245 259) (257 270)

defines a set of 1D gates BAND21 within the limits O to 511 inclusive which contains 3 gate defini-
tions:

gate 1 is defined as channels 123, 124, 125, 126;

gate 2 as channel s 245, 246, 247,..., 254, 255, 256;

and gate 3 as channel s 257, 258, 259, 260,..., 268, 269, 270
because gate 3 overl aps gate 2.

2D gates

A 2D gate-map consists of one or more sets of x--y coordinate pairs. Each set defines a polygonal -
shaped gate in two dimensions against which pairs of values may be tested in the commands section.
If any polygons overlap within a set successive gates have precedence over earlier ones.

GATES 2D <2D-gate-map-name> [< x-range, y-range > |
(<gate of 1D coordinate pairs>)1
(<gate of 1D coordinate pairs>)2

'(' '<gate of 1D coordinate pairs>)

ngates

Example

GATES 2D MASSMVAP[64, 64]
(11 44 13 36 18 30 25 29 28 35 30 49 26 60 20 58)
(31 62 29 1 52 1 51 62)

Defines the map MASSM AP with limits 0 to 63 in both the x- and y- directions. A coordinate pair
will pass a polygonal gate if the point it defines falls within the polygonal shape defined by that
gate.

Note

1. The coordinate pairs are not individually separated to simplify the syntax, hence care must be
taken when inputting the data.

2. 2D gatemaps become large for large values of <x-range> and <y-range> .

Elliptical gates

Elliptical gates may be specified in 2 or 3 dimensions. They are defined by specifying the coordin-
ates and axes of each ellipse or ellipsoid making up the list of gates.

GATES ELLI PSE2D <2D-dlliptica-gate-name>
(<x-coordinate> <y-coordinate> <x-radius> <y-radius>)1
(<x-coordinate> <y-coordinate> <x-radius> <y-radius>)2

(<x-coordinate> <y-coordinate> <x-radius> <y-radius>)n

where <x-radius> and <y-radius> define the radii for each &% of the ell pse.

16

*DATA

Each set of coordinates and radii defines an elliptical gate against which pairs of values may be
tested in the commands section. If any gates overlap within a set earlier gates have precedence over
later ones. See IF...GATEDBY and LOOPIF...GATEDBY commands.

GATES ELLI PSE3D <3D-élliptical-gate-name>
(<x-coordinate> <y-coordinate> <z-coordinate> <x-radius> <y-radius> <z-radius>)
(<x-coordinate> <y-coordinate> <z-coordinate> <x-radius> <y-radius> <z-radius>)2

.(. .<x-coordi nate> <y-coordinate> <z-coordinate> <x-radius> <y-radius> <z-radius>)
where <x-radius> <y-radius> and <z-radius> define the radii for each axis of the dlip&)lﬁ.

Each set of coordinates and radii defines an ellipsoidal gate against which 3 values may be tested at
atime in the commands section.

17

*DATA

Data arrays

Three types of arrays may be defined to store data for subsequent access in the commands section.
Value arrays may be used to store integer or real data. Gate arrays store pairs of integer values to
define arrays of gates. Gain arrays store the gain parameters associated with particular sortwords.

Vaue and 1D gate arrays both allow a lookup facility dependent on another parameter, e.g. group
number.

Value arrays

VALUEARRAY definesa 1D, 2D or 3D array of 32-bit integer or real values that can be accessed
in the commands section.

VALUEARRAY <array-name>

<x-range> #, <y-range> #, <z-range> ## SAVE [< datalist >]

where <x-range> is the channel range in the first dimension, and the y- and z- quantities the correspond-
ing valuesin higher dimensionsiif applicable, specified in the same way as for gate-maps.

If no starting channel is given it is assumed to be zero and the maximum channel will be (
<x-range> - 1) as before. If the SAVE keyword is specified, then the array is written back to disc at
the end of the sort, allowing modified arrays to be preserved. This discfile will normally be in the
sort setup directory created when a sortfile is compiled. The <datalist> is allowed in free format.

Note

The array data type (integer or float) is determined from the type of the first data element specified
in<datalist> .

The values specified in <data list> are given in C-style ordering: the z-parameter changes more

quickly than y- which changes more quickly than x-. This is the opposite way round to the conven-
tion used in FORTRAN.

Example

VALUEARRAY ANGLES [1: 20]

157.60 157.60 157.60 157.60 157.60
133. 57 0 107.94 0 107.94
133.57 94.16 133.57 107.94 94.16
107.94 133. 57 0 133.57 107.94

definesareal 1D array ANGLES containing 20 elements.

Example

VALUEARRAY ARRAY2 [2:6,3] 1 11 21 2 12 22 3 13 23 4 14 24 5 15 25

defines an integer 2D array ARRAY 2 spanning from channels 2 to 6 in the first dimension (5 chan-
nels) and from channels 0 to 2 in the second. The values will be assigned as follows:

(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2)... etc.

An example of their use in the commands section would be:

18

*DATA

Example
A = B/ ANGLES(<argunent>)
C = ARRAY2(<argument> 1, <argument> 2)

where <argument> is an integer expression. See Arithmetic Expressions.

Any array elements not initialised by VALUEARRAY are set to zero.

Gate arrays

A gate-array contains the definition of a 1D array of pairs of channel numbers and the corresponding
array element number. Data is allowed in free format specified in order of increasing array element
number in the range 0 to 255 where array elements may be omitted from the sequence. Each pair of
channel numbers defines a gate.

GATEARRAY <1D-gate-array-name>
<array-indexl> (<low-limit> <high-limit>)
<array-index2> (<low-limit> <high-limit>)2

at

<array-|ndexng o (<low-limit> <high-limit>)ng stes

Gate-arrays may be defined here and used in the commands section to filter all group format data of
the same type through different 1D gates. See commands IF...PASSES and LOOPIF...PASSES.

Example

GATEARRAY TACGATES
1 (100 4000) 2 (95 4000) 6 (100 3950) ... 40 (85 4000) 45 (100 4000)

would define the gate array TACGATES. This array could then be accessed in the commands sec-
tion to filter each germanium TAC word with parameters dependent on the group number.

Gain arrays

Sets of gain matching parameters may be specified in this section by means of a GAINWORD or
GAINARRAY statement and referenced in the commands section viathe GAIN command.

GAl NWORD <parameter-set-name> <a> <c>
GAl NARRAY <gain-array-name> <a> <c>
<array-indexl> <a,><c >

<array-index2> <a,> <b2> <c,>

<array-index ><a ><c >
where <parameter-set-name> contains the single set of parameters <a > <bn> <c > and
<gain-array-name> contains <n> sets of gain matching parameters.

GAINWORD is designed for use with single variables and GAINARRAY is used with group-
format variables, alowing the same item name associated with al groups of the same type to be

19

*DATA

gain-matched by a single command line in the commands section,

GAINARRAY datais allowed in free format with array element number in the range 0 to 255.

Example

* FORMATS
GAINWORD GE_19 0.3 -0.05 0.00 /1 single variable paranmeters
GAINVORD GE_ 29 0.6 0.02 0.00

GAl NARRAY E2GAI NS /1 group format
1 (-0.2 0.10 0.00)
3 (0.7 -0.03 0.00)

70 (-0.1 0.05 0.00)

Each statement stores a set of gain-matching parameters associated with a particular sortword.

The value of <sortword> may then be modified in the commands section using the GAIN command
according to the equation:

<sortword> = a + b* <sortword> + ¢* <sortword> 2
Arrays of arrays

A set of arrays of the same type (valuearray, gatearray or gainarray) may be defined. This is cur-
rently implemented for gainarrays and gatemaps in commands if...gatedby and loopif...gatedby.

ARRAYLI ST <arraylist-name> [< array-name > r

The arraylist defines an array starting at element zero.

20

*SPECTRA

<spectrum name> # [<index-range>] # <number of channels> [<type>] #DISC #

where <index-range> is expressed as

<lower-limit> : <upper-limit>

and <lower-limit> and <upper-limit> are optional integer values which allow more than one spectrum to
be declared by a single statement.

See Indexed Spectrum Updates section for an example application.

and <number of channels> is one of:

<integer> 1D spectrum

<integer>* <integer> Rectangular 2D spectrum
2D Square 2D spectrum
<integer>* <integer>* <integer> Cuboid

3D Symmetrised 1/6 cube

and <type> (optional) is:

8 Signed byte precision, 8-bits per channel
16 Signed single precision, 16-bits per channel
32 Signed double precision, 32-bits per channel

The optional keyword DI SC makes the spectrum disc-based during sorting.

If <type> is omitted then the default of 32 isassumed for 1D, 16 for 2D and 3D.

By default, spectra are sorted into shared memory. It is the user's responsibility to ensure that there
is sufficient memory available. Any combination of memory and disc-based spectra may be spe-
cified but as the sort package is essentially memory-based and is not fully optimised for disc-based

sorting, the use of disc-updated spectrawill degrade the performance.

For the maximum number of spectra allowed, see Appendix A.

Example

Some typical spectrum declarations might be:

* SPECTRA
TI ME 1024 // 1D 16-bit, 1024 channel s

GEL1 4096 32 // 1D 32-bit, 4096 channel s

GEL3 4096*1024 /1 2D 16-bit, 4096 by 1024 channel s
GEL4 1024 2D /1 2D 16-bit, 1024 channel s square
GSPEC 1024*1024*8 /1 3D 16-bit, 1024 by 1024 by 8 channel s
SM 4: 10] 4000 /1
CUBE[1: 5] 16 3D 8 /1

7 1D 16-bit spectra, 4000 channels each
5 3D 8-bit 16 channel cubes

21

*AUTOGAIN

Gain drifts can be monitored viathe * AUTOGAIN section.

The gain matched values of two well-defined peaks must be supplied. Initial gain coefficients for a
quadratic fit may be supplied in the *DATA section. Alternatively, two peak positions for each data
value to be monitored may be supplied in this section and initial linear coefficients will be derived.

The* AUTOGAIN section adjusts the gain coefficients by measuring the shift in two peak positions
for each spectrum. For an initial calibration E for data value x:

E=a+ bx+ o
and for the shifted energy E an given by:
E =A+BE

new
then the shifted coefficients are derived as:
a =Ba+A

new

b _=Bb

new

c _ =Bc
new

The gain coefficients are applied to the data by means of the GAIN in the * COMMANDS section.

The gain coefficients are calculated in the autogain section and updated into again array (defined in
the *DATA section). This gain array needs to be associated with a set of data words by an INIT
statement in the autogain section.

The user can set the number of blocks (autogain period) over which the gain coefficients are initially
calculated and subsequently monitored during the sort. A minimum acceptable peak area and max-
imum deviation may also be specified.

After the sample number of data blocks have been read, the peak centroids in the autogain spectra
are determined and matched to the control values. This enables the gain shift to be calculated. At the
start of an autogain sort, only the commands in the autogain section are executed until all the initial
gain coefficients have been determined. If they have not all been determined after three times the
autogain period then the autogain phase will stop. Any unresolved coefficients will take the initial
values supplied at the start of the autogain phase.

After this initial autogain phase offline, the first file will be rewound and the sort will restart, now
executing the statements in the * COM M ANDS section and checking for gain drifts each autogain
period.

If apeak centroid in a gain spectrum shifts by more than the specified deviation then the gain coeffi-
cients for the corresponding data word will be recalculated. All autogain spectra are zeroed after the
gains are monitored each time.

22

*AUTOGAIN

Declarations

SAMPLE <nbl ocks>
where <nbl ocks> isthe number of blocks after which the gain coefficients are recal culated.

Up to four times the sample number of blocks may be used to obtain the initial gain coefficients. A
default value of 50000 blocksis assumed if noneis specified.

PEAKAREA <mi ni num accept abl e- peak- ar ea>
where <m ni mum accept abl e- peak- ar ea> is the minimum integration area under a peak re-
quired for the gain spectrum to be used to evaluate gain coefficients.

An estimate is made of the background under the peak in order to calculate the peak area. A default
value of 50 is assumed.

DEVI ATI ON<naxi mum accept abl e-centroi d-shi ft >
where <maxi mum accept abl e- cent r 0i d- shi f t > is the maximum centroid shift of a peak in a
gain spectrum to avoid calculation of new gain coefficients.

A default value of 1.0 is assumed.

INIT <gain-array> FROM <I1D-spectrum> CENTROIDS <centroid > <width >
<centr oi d2> <wi dt h2>

PEAKS

#<gr oup- nunber ><centr oi d1> <wi dt h1> <centroi d2> <wi dt h2> #r

#

where<gai n- ar r ay> isthe name of again array aready declared in the * DATA section,

<1D- spect r une isthe name of an array of 1D 32-bit precision spectra declared in the * SPECTRA sec-
tion

and the centroids and widths are floating point numbers denoting the gain matched positions and widths
of two control peaks to gain match to.

The INIT line is optionally followed by a PEAK'S statement in which estimates of the actual peak
parameters are specified for each group number.

VOVERC<r eal nunber >
COPYGAI N FROM<gai n-array>[<group-range >] TO<gai n-array>[<group-range
>] ANGLES <val ue- array>DELTAS<val ue- array>

These statements allow the gain coefficients to be adjusted for detectors where multiple leaves fire
and the midpoint angle is used to correct the autogained coefficients for such data. See example in

Appendix B for use.
Example

* DATA

GAI NARRAY GAI NS1

* SPECTRA

GSPEC] 2: 5] 4096 32

23

*AUTOGAIN

* AUTOGAI N

SAMPLE 10000

PEAKAREA 40

DEVI ATI ON 0. 80

I NI T GAI NS1 FROM GSPEC CENTRO DS 550 5.0 1204 7.3
PEAKS

2 545 5.0 1200 7.2

3 546 5.0 1202 7.2

5 551 5.0 1207 7.3

24

*AUTOGAIN

Commands

Only a subset of the full *COMM ANDS section is available here to allow the update of gain spec-
tra

CREATELI ST <gr oup- par anet er - | i st - nane>FROM <gr oup- nane>

CREATELIST defines an internal list of data words from <gr oup- par anet er - | i st - nanme>
which consists of the variables specified in an item list that are found in the current event,

Example

CREATELI ST CELIST FROM GE

would create the group-parameter-list GELI ST consisting of al the germanium groups.

I NC<aut ogai n- spect r um nane> (<x- channel >) INDEXED <i ndex>

Spectra may be indexed my means of the INDEXED keyword used with the INC command where
<i ndex> may be an integer expression, or dollar word used to specify a group number. The value
of <i ndex> determines which spectrum will be incremented: a value of 1 indicates the first spec-
trum in the array; 2 indicates the second, and so on. Spectra indexed in this way must al have the
same dimensions and precision and be defined consecutively in the spectra section.

See first example in Appendix B for how to use autogain to derive gain coefficients and then use
them in the main commands section.

25

*COMMANDS

This starword recognises as keywords all sort command names. The sort commands are executed
for each event in the order in which they appear in the setup file. A sort command is a built-in
routine which performs a function on the sortwords.

26

*COMMANDS

INC

DEC

SET
INCBITS
CREATELIST
EXTRACT
LOOPEXTRACT
IF

LOOPIF
SELECT
GOTO
LABEL
INVALIDATE
GROUPFILTER
ORDER
GAIN
ROUTINE
CALL

EXEC
DOLOOP
OUTPUT
ENDEVENT
END

PAUSE

X=expr

List of Commands

increments a spectrum

decrements a spectrum

assigns a value to a spectrum channel

increments the bit pattern of an expression into a 1D-spectrum
defines a parameter-list of parameters from the event

obtains subsets of valid parameters from a defined parameter-list
obtains subsets of valid parameters from a defined parameter-list
conditional execution of sort commands

conditional execution of sort commands in parameter-list environment
alows correlation of sort commands with parameter values
jump forward to a specified |abel

define alabel to jump to

alows a group to be removed from the event

allows groups to be removed from the event

ordersalist of sortwords according to their value

adjusts the gain of a sortword using a quadratic

starts a subroutine-like section

execute the set of commandsin aROUTINE

execute an external sort function

allowslooping over several commands

outputs alist of sortwords or a complete event

terminates event processing

ends event processing, or returns from called ROUTINE

pauses event processing

arithmetic operations, assign expression to sortword/spectrum x

A particular sort command may be used as many times as necessary subject to any system-de-
pendent limit on resultant program size. Any sortword generated by a command may be used as in-
put to any succeeding command.

The lF..ELSE, LOOPIF...LOOPFAIL and IF..GOTO label block structures should normally be
used to define the processing flow.

27

*COMMANDS

Parameter Lists

High fold data can usually be sorted more easily by means of parameter lists. There are three types

of list:

word-parameter-list consisting of individual datawords
group-parameter-list consisting of members of agroup
item-parameter-list consisting of lists of items from one or more groups

Once alist has been created it can be operated on by other sort commands to alow the same com-
mand to loop over every item in the list. Commands which operate directly on parameter lists are:

CREATELIST
EXTRACT
LOOPEXTRACT
INC

DEC

INCBITS
LOOPIF

28

*COMMANDS

Simple Spectrum update commands

I NC| DEC<spect r um nanme> (<x- channel >#<y- channel >#<z- channel > ##)
SET <spect r um name> (<x- channel > #<y- channel >#<z- channel > ##) = <expression>

where achannel is defined as one of the following ...
arithmetic expression

parameter-list

$word = group-parameter-list

INC | DEC increment/decrement the spectrum channel specified. SET sets the spectrum channel to
the value given by <expression> . If a parameter-list is specified for a channel then the command
will be applied to all members of the list present in the event. If the same list is used for different
channels of a spectrum then the i element of alist will not be incremented with the it element.

Example

| NC GVAT(GELI ST. E2, GELI ST. E2)

mcrement the channels given by each E2 word for parameter-list GELIST. Channels given by
the| element of the first list and the i element of the second list are not incremented, i.e. the same
gamma-ray is not incremented with itself.

Example

| NC GS1(GE[1] . E1)

... increment the channel GE[1].E1 of spectrum GS1, where E1 is an item associated with the group
GE[1].

Example

DEC GANVSPC((GAML+100) / 2)

... decrement channel (GAM 1+100)/2 of spectrum GAM SPC.

Example

SET TCHECK(10) = cl ock.wl

... assign the data word clock.w1 to channel 10 of spectrum TCHECK.

29

*COMMANDS

Example

| NC MVAT2D(WORDX, LI STX)

.. increment channel given by the word WORDX (x-coordinate) and all valid words in word-
parameter-list LI ST X (y-coordinate) of 2D spectrum MAT2D.

Example

| NC ALL_GES(GELI ST. E2)

... increment channel given by al valid E2 words in group-parameter-list GELIST of spectrum
ALL_GES

Example

| NC GFEX3(GAMA, GAVB, GAMC)

... increment the symmetrised cube GFEX3 at the location given by GAMA, GAMB and GAMC.

Any spectrum update attempted by a command in this sort package which falls outside the defined
spectrum dimensions will be safely ignored.

30

*COMMANDS

Indexed Spectrum update commands

I NC| DEC <spect r um name> (<x- channel > #<y- channel > #<z- channel > ##) INDEXED
<i ndex>

SET <spect rum name> (<x- channel > # <y- channel > # <z- channel > # #) INDEXED
<i ndex>=<expr essi on>

Spectra may be indexed my means of the INDEXED keyword used with the INC or DEC com-
mands where index may be an integer expression, or dollar word used to specify a group number.
The value of index determines which spectrum will be incremented, decremented or set: avalue of 1
indicates the actual spectrum specified; 2 indicates the subsequent spectrum defined in memory, and
so on. Spectra indexed in this way must all have the same dimensions and precision and be defined
consecutively in the spectra section.

For example, it is sometimes useful to be able to update a different spectrum for each gate number
passed by a gate-map testing command. e.g.

Example

* SPECTRA

CE132[3: 20] 4096

* COVMANDS

| F GAML GATEDBY GLREC {

| NC CE132(GAMR) | NDEXED GATE

where GATE denotes the gate number passed in the gate-map GLREC by the IF...GATEDBY
command.

If GATE is 4 then the 3rd spectrum defined after CE132[3] in the *SPECTRA section, i.e.
CE132[6], will be incremented with the value of sortword GAM 2.

It is also possible to use this feature to increment a spectrum according to the group number of a
word, eg.

Example

| NC CE132(GROUPA=CELI ST. E2) | NDEXED $GROUPA

where $GROUPA denotes the group number passed in the parameter list GELIST.

31

*COMMANDS

Incbits command

I NCBI TS <1D- spectrum nanme> (<bit-pattern>) OFFSET <i nt eger-offset> # IN-
DEXED <i ndex> #

This command increments a bit-pattern into 16 channels of a 1D spectrum commencing at the offset
specified, where bit-pattern is an expression. It may be optionally indexed. The least significant bit
will be incremented at the channel given by integer-offset and successive bits in subsequent chan-
nels.

E.g. to obtain a spectrum of 4 bit-pattern sortwords, the command would be used as follows:

Example

| NCBI TS MULT(MB1) OFFSET 0O

| NCBI TS MULT(MB2) OFFSET 16
| NCBI TS MULT(MB3) OFFSET 32
| NCBI TS MULT(MB4) OFFSET 48

where MB1, MB2, MB3 and MB4 are 4 adc pattern words and MULT is a 1D spectrum 64 chan-
nels long. The bit-pattern of MB1 will be incremented into spectrum MULT starting at the first
channel (offset 0), that of M B2 incremented starting at the 17" channel, etc.

32

*COMMANDS

List generation/extraction commands

These commands have been provided to allow sorts of high-fold data to be specified more easily by
users. They allow lists of data words to be created and accessed. Other commands which will act on
each valid member of a parameter list are: INC, DEC, LOOPIF..test, USER and OUTPUT.

33

*COMMANDS

Createlist command

<CREATELIST> <wor d- par anet er - | i st - nanme>FROM [<wor d- nane >]r
<CREATELIST> <gr oup-paraneter-|ist-name> FROM <group-nane> # [<group-
nunber -range>]#

where the optional <group-number-range> is used to specify a subset of group numbers from those
defined for <group-name>

and takes the form of one or more of the following separated by , (comma) ...

<gr oup- nurber >

<gr oup- numrber > <group- nunber 5

or

<lower-limt:upper-limt>

<lower-limt_ :upper-li rrit1>,<l ower-limt_:upper-li mt2>...

CREATELI ST <i]I em paraneter-1ist-nane> FRCﬁ\/I [<group.itemnane>]r

CREATELIST defines a list of data words present in the current event. A word parameter list is
constructed from alist of individual words,

Example

CREATELI ST VARS1 FROM TACl TAC2 TAC3 TACA

A group parameter list is specified using a single group name,

Example

CREATELI ST CELIST FROM GE

would create the group-parameter-list GEL I ST consisting of all the germanium groups.

A group parameter list may also be specified from a subset of a group,

Example

CREATELI ST GELI STA FROM GE[1: 6]
CREATELI ST GELISTB FROM GE[7,9:12]

would create the group-parameter-lists GEL I STA consisting of germanium groups 1 to 6 and GEL -
| STB consisting of germanium groups 7 to 12 omitting 8.

An item parameter list is specified using one or more group.item combinations,

Example

CREATELI ST GAMLI ST FROM GE.E4 CLOVERS1. A2DAT

34

*COMMANDS

would create the item-parameter-liss GAMLIST consisting of all the E4 items in group GE and all
the A2DAT wordsin group CLOVERSL.

Lists may be used with other commands so that a single command may be applied to al the mem-
bers of thelistinturn, .e.g.

Example

| NC GAMTOT(GELI ST. E2)

would increment all the E2 words in list GELIST which were present in an event into spectrum
GAMTOT.

35

*COMMANDS

Copylist command

<COPYLIST> <wor d- par anet er - | i st - nanme,> TO <wor d- paraneter-1|i st-nanme_>
<COPYLIST> <gr oup- par anet er - | i st - name >TO <gr oup- par anmet er - | i st - naie,>

COPYLIST copiesthelist of datawords present in the input list to the output list.

Example

createlist gelist fromge

coioyi ist gelist to newgeli st

36

*COMMANDS

Extract command

EXTRACT <word-paramneter-1|ist-name> INTO <paraneter-1list> ORDERED | RE-
VERSED

EXTRACT <gr oup- par anet er-1i st-name>. <i ten> INTO <par anet er-1i st >ORDERED
| REVERSED

EXTRACT <gr oup- par anet er-1i st-nane>INTO<par aneter-|ist>

where<par aneter-1i st>is:

<word>[<word>]r

EXTRACT places valid words from a parameter list into output words to be accessed individually.

In the first 2 forms of the command EXTRACT scans the items in
<*-paraneter-|ist-name> and copies only those which are valid in the current event to
<par anet er -1 i st > . In this case the values of the parameters in the input list are copied to the
specified words,

Example

EXTRACT LIST1.E2 |INTO GAVA GAMB GAMC GAMD

copies valid parameter values from the group parameter list LIST1.E2 into the words GAMA,
GAMB, €ic.

In the third form of the command the group information is retained in the output parameters. Thisis
through use of the $ symbol which indicates that the variable references a group-format parameter
and does not contain the actual value itself. This means that the group number information, i.e. ad-
dress, isretained in $-parameters.

The output data must be accessed by specifying the group and an associated item ...

Example

EXTRACT LISTL |INTO $GA $GB
| F $GA. E2 PASSES GARRAY($GA) {
I F $GB. E2 PASSES GARRAY($GB) {

}

}

copies the group numbers of valid parameters in group parameter list LIST1 into the group-words
$GA and $GB. This group information is then used by the IF...PASSES commands to index into
the gate array GARRAY.

If there are fewer valid words than output words they will be placed in the first output words spe-
cified in the command. If there are more valid words than available output words then the output
words are chosen randomly from the valid wordsin the input list.

EXTRACT can be combined with the arithmetic NUMBER function (See Arithmetic Functions).
to obtain the number of wordsin the parameter list which are present in the event,

37

*COMMANDS

Example

EXTRACT GELIST.E2 [INTO GAVA GAMB GAMC GAMD GAME GAMF
| F NUMBER(GELI ST) GT 4 {

The optional keywords ORDERED (REVERSED) enable the user to specify whether the values of
words in the input list are to be output in order of increasing (decreasing) numerical value. If no
keyword is specified then the values are output in the order in which they appear in the input list.

38

*COMMANDS

Loopextract command

LOOPEXTRACT <wor d- par anet er - | i st - name> INTO <par anet er - | i st > ORDERED | RE-
VERSED {
<st at enent s>

LOOPEXTRACT <group-paraneter-list-name> . <itenr INTO <paraneter-|ist>
ORDERED | REVERSED {
<st at ement s>

}
LOOPEXTRACT <gr oup- par anet er - i st - nanme>INTO <par aneter-1i st >{
<st at ement s>

}
where<par anet er-1i st>is:
<word>[<word>]r

LOOPEXTRACT works in the same way as the EXTRACT command except that if there are
more valid words in the input parameter-list than available output words then event processing will
loop over all combinations of input words for the associated <st at enent s> .

Example

CREATELI ST LIST1L FROM GE
LOOPEXTRACT LIST1.E2 INTO A B

|{ NC MAT2(A, B)
|} NC MAT2(B, A)

So if there were 3 valid words in list LIST1, say X, y and z, then LOOPEXTRACT would be ex-
ecuted for the following parameter combinations (x,y), (x,2) and (y,2).

39

*COMMANDS

If...else... command (single sortword environ-
ment)}

| F<test><statenents>#ELSE <st atenents>#

where <t est > is one of the following:

<sortword>VALID

<sortword, > | <br acket ed_exprl> EQINE|GE|LE|GT|LT <sortword2>

<br acket e%i_expr 2>

<sortwor d>|<bracket ed_expr>PASSESFAILS<1D- gat e>

<sortword>|<bracket ed_expr>MASKEDBY <16-bit nmask>

<sortwordx> | <_bracket ed_exprx> # <sort wor dy> | <br acket ed_expry> # GATEDBY
<gat e- expr essi on>

<br acket ed_expr >isanorma <expr essi on> surrounded in brackets e.g. (at+b)

and <gat e- expr essi on>isone of:

<gat e- nane>

<arraylist-of-gates>[<expression>]

where the gate dimension must match the number of arguments tested. The <expr essi on> specified
with the arraylist argument determines the offset into the arraylist, starting from zero, and hence the par-
ticular gate map referenced.

The IF command allows conditional execution of <st at ement s_> or <st at enent s, > depend-
ing on the result of a test. If the result is true, then <st at enent s, > are executed, otherwise
<st at ement s_> are executed (if specified). The various forms of the 1F command are described
below in more detail.

Validation test operator (VALID)

| F<sortword>VALID ...

where VAL ID means “present in the event' or “set true by some previous statement in the sortfile,
i.e. by an arithmetic assignment, EXTRACT, LOOPEXTRACT or CALL statement. For each
such word, <st at ement s > are executed.

Comparison operators (EQ,NE,GE,LE,GT,LT)

I F <sortwordl> | <br acket ed_expr1> EQINE|GE[LE|GT|LT <sortword2> | <const ant > |
<br acket ed_expr g

where

EQ denotes “is equal to"

NE denotes “is not equal to"

GE denotes "is greater than or equal to"

LE denotes “isless than or equal to"

GT denotes ""is greater than"

LT denotes s less than"

and <const ant > may be an integer or real constant.

Thefirst <sor t wor d> or <expr essi on> is compared with the second according to the operator
specified,

Example

40

*COMMANDS

NC SPECL(GAMA)

| F GAMA GT THRESHOLD {
|
I NC SPEC2(TAC)

}

ELSE EVENTEND

In the above example, the spectrum increments are performed if the value of GAMA is greater than
that of THRESHOL D. Otherwise event processing is terminated for that event (EVENTEND com-

mand).

Filtering operators (PASSES,FAILS)

| F<sortword>|<bracket ed_expr>PASSES(<lower-limt>,<upper-limt>)..

where expressions may be used to define <l ower -1 i m t >and <upper-1imt>.IF..PASSES
istrueif <sor t wor d> or <expr essi on> fallsinside the gate defined by <l ower -1 i m t >and

<upper-1imt>inclusive,

Example

| F GAVA PASSES (100 , HLIMT) | NC SPECL(GAMB)

causes spectrum SPEC1 to be incremented if the value of sortword GAMA lies between 100 and

thevalue of HLIMIT (inclusive).

If <upper-1limt>islessthan <l ower-1imt> then the IF test will aways give the result

FALSE.

| F<sortword>|<bracket ed_expr>PASSES<gat e- arr ay- nanme> (<i ndex>) ...

where <i ndex> is an integer expression which gives the array element number used to obtain a

gate defined in <gat e- ar r ay- nanme> . See gate-array command.

Example

EXTRACT GELI ST | NTO $GL
| F $GL. TAC PASSES TACLI ST($GL) {

| F<sortword>|<bracket ed_expr>FAILS<gat e- arr ay- name> (<i ndex>) ...

Conversely IF...FAILS is true only if <sortwor d> or <expr essi on> is present in the event

and falls outside the limits of the gate,

Example

41

*COMMANDS

|F GAMA FAILS (100 , HLIMT) {
DEC SPEC2(GAVB)
DEC SPEC3(GAMC)

}

causes spectra SPEC2 and SPEC3 to be decremented if sortword GAMA is outside the range
defined by 100 and HLIMIT (inclusive).

Masking operator (MASKEDBY)

| F<sortword>|<bracket ed_expr>MASKEDBY <16-bit mask-val ue>...

IF..MASKEDBY istrueonly if all the bits set in the 16-bit mask are present in the sortword or ex-
pression being tested,

Example

| F GAVA NVASKEDBY 990110101 I NC SPECL(MB1)

causes SPEC1 to be incremented if all the bits set in GAMA are aso set in the bit pattern
% 00110101.

| F<sortword>|<bracket ed_expr>MASKEDBY <bi t mask- set - nane> ...

This form of the command is true if there is a bit pattern in <bi t mask- set - nane> for which al
the bits set are present in <sor t wor d> or <expr essi on> . The gate number of the bit pattern
which satisfies this condition is placed in the reserved word GATE.

Gate-testing operator (GATEDBY)

IF...GATEDBY s true if the value or <sort wor d> or <expr essi on> falls within the set of
gates associated with <gat e- expr essi on> . The gate number passed is placed in the reserved
variable GATE. Thisvariableis only recognised within <st at ement s> . See section group name
for definition of gate limits.

| F<sortword>|<bracket ed_expr>GATEDBY <1D- gat e- expr> ...

Example

| F GAMIOT GATEDBY GLIST1 {
| NC SPECL(GAMTOT)
I NC SUMBPEC(SUMVEN)

}
ELSE EVENTEND

where the spectra SPEC1 and SUM SPEC are incremented if sortword GAMTOT passes any of the

42

*COMMANDS

1D gates defined in the gate-map GLIST 1. If no gates are passed then command processing is ter-
minated for that event (EVENTEND command).

| F <sortword > | <bracket ed_expr > <sortvvord > | <bracketed _expr, > GATEDBY
<2d- gat e- expr>..

In the 2D gate test command the gate is passed if the coordinates given by <expr > and <expr >
fall within the set of 2D polygonal or elliptical gates specified in <2d- gat e- expr > . The intér-
section of two polygonsis given the gate number of the later defined gate.

Example

| F EDELTE SUMEN GATEDBY GRECL {
I NC MASS1(GAMTOT)
SELECT(GATE)
conmands dependent upon which gate passed ...

}
ELSE {
| F EDELTE SUVEN GATEDBY GREC2
I NC MASS2(GAMTOT)
}

If EDELTE (x-coordinate) and SUMEN (y-coordinate) pass any of the gates defined in the gate-
map GREC1 then the commands within the first set of braces will be executed, otherwise if they
pass any of the gates defined in GREC2 then the commands within the second set of braces will be
obeyed:

43

*COMMANDS

Loopif...loopfail... command (parameter-list en-
vironment)}

LOOPI F <t est > # NEWLISTX= <l i st-name> # # NEWLISTY= <l i st - name> # <st at e-
ment s, > # LOOPFAIL <st at enent S,> #

where <]t est > isone of the following:

<wor d- param | i st >VALID

<$- wor d>=<gr oup- parant| i st >VALID

<l'i st -expressi on>EQ|NE|GE|LE|GTILT <sort wor d> | (<expr essi on>)

<l i st - expressi on>PASSESFAILS<1D- gat e>

<l i st-expressi on>MASKEDBY <16-bit nmask>

<l i st-expressi on > <l i st-expressi on >GATEDBY <2d- gat e- expr essi on>

<l i st-expressi on > <sortwor dy> y| (<expr essi ony>) GATEDBY
<2d- gat e- expr essi on>
<sortwor dX> | (<expr essi on >) <list-expressi ony> GATEDBY

<2d- gat e- expr essi on>

and <l i st - expr essi on>iseither aword- or agroup- parameter list:

<wor d- par aneter - i st - nane>

#<$- wor d> =#<gr oup- paranmet er -1 i st - nanme>.<i t em name>

where for a group parameter list the particular group passed may be stored in the group variable $-word if
specified.

<gat e- expr essi on>isoneof:

<gat e- map- nane>

<arrayl i st-of - gat enaps>[<expressi on >]

where the gate dimension must match the number of arguments tested. The <expr essi on> specified
with the arraylist argument determines the offset into the arraylist, starting from zero, and hence the par-
ticular gate map referenced.

The LOOPIF command is a parameter-list form of the IF command, i.e. it executes an | F test for
all words in an input parameter-list. Each time an item from the list (or item pair from the lists) is
found that satisfiesthe test <st at enent s, >ae executed.

If theinput list is aword parameter list (See Createlist command) then for each test the current para-
meter value being tested is placed in the reserved variable WORDX (or WORDY for <par anet -
er-list- narrey>).

For the LOOPIF..MASKEDBY <bit mask-set-name> and LOOPIF..GATEDBY com-
mands, the gate number passed each timeis placed in the reserved variable GATE.

If the NEWLISTX and/or NEWLISTY (for the second list in 2D gate-map case) keywords are
used to specify output parameter lists then for each parameter which satisifes the test al the other
parameters in the input list are copied to the specified output lists.

If no parameter-list items satisfy the test and LOOPFAIL has been specified then
<statements,>are executed.

Example

Consider the case where 2 group parameter lists are being tested together against a 2D gate-map.
Each valid word in the first list is tested with all valid words in the second list:

CREATELI ST LI ST1 GE30

CREATELI ST LI ST2 GE150

LOOPI F LI ST1. E2 LI ST2. E2 GATEDBY GATES1 NEW.I STX=LI STIA NEW.I| STY=LI ST2A
I NC MAT6(LI ST1A. E2, LI ST2A. E2)

*COMMANDS

i.e. al the combinations of E2 words in lists LIST1 and LIST2 will be tested. For those combina-
tions which pass any of the gates in the gate-map GATESL then the INC command will cause all
permutations of the remaining E2 words in the lists (L1ST1A and L1ST2A) to be incremented into
the 2D spectrum MATS6.

Validation test operator (VALID)

LOOPI F <wor d- param | i st >VALID ...
LOOPI F #<$- wor d> =#<gr oup- param | i st >VALID ...

For aword parameter list, <st at enent s, > are executed for each word in the list which is present
in the event. For a group parameter list, <st at ement s, > are executed for each group in the list
which is present in the event. If the optional " <$- wor d> =" is specified in the command then the
group identifier is assigned to the $-word variable for each iteration of the loop.

Comparison operators (EQ,NE,GE,LE,GT,LT)

LOOPI F <l i st - expressi on> EQ|NE|GE|LE|GT|LT <sortwor d> | <const ant > | <expr es-
sion>..

where

EQ denotes “is equal to"

NE denotes ""is not equal to"

GE denotes "is greater than or equal to"

LE denotes “isless than or equal to"

GT denotes "is greater than"

LT denotes “isless than"

and <const ant > may be an integer or real constant.

In this format of the LOOPIF command all words from <par amet er - | i st > found in the event
are compared with the value of <sor t wor d> or <expr essi on> according to the operator spe-
cified. For each case which gives the result true then <st at enent s, >ae executed.

Example

CREATELI ST GELIST FROM GE
LOOPI F GELI ST. E1 GT THRESHOLD {
| NC SPECL(GAMR)
| NC SPEC2(TAC)

}
LOOPFAI L EVENTEND

In the above example, the spectrum increments are performed if the value of GELIST.E1 is greater
than that of sortword THRESHOLD. Otherwise event processing is terminated for that event
(EVENTEND command).

Filtering operators (PASSES,FAILS)

LOOPI F <l i st - expressi on> PASSES|FAILS<1D-gate> (<l ower-limt>, <upper-lim
it>)..
LOOPI F <l i st - expressi on>PASSES|FAILS <gat e- arr ay- nane> (<i ndex>) ...

45

*COMMANDS

The first form of the command allows valid member of <par anet er - | i st > to tested against the
gate defined by the expressions <l ower - | i m t > and <upper -1 i m t>. Inthe second form of
the command each valid member of <par anet er-1i st > to tested against a gate in the array
<gat e- ar r ay- name> (See Gate-Array command) where the array element number used is given
by the expression <i ndex> .

Example

* DATA
GATEARRAY TACGATES
1 (100 4000) 2 (90 4000)

* COMVANDS

CREATELI ST CELIST FROM GE
LOOPI F $GROUPX=CELI ST. TAC PASSES TACGATES($CGROUPX) {

}

LOOPIF...PASSES istrue for each case where amember of <par anet er - | i st > fallsinside the
gate defined by <lower-limt> and <upper-limt> inclusve. Conversely
LOOPIF...FAILS istruefor each case where amember of <par anet er - | i st > ispresent in the
event and falls outside the limits of the gate.

Masking operator (MASKEDBY)

LOOPIF <list-expression> MASKEDBY <16-bit mask-value or bitnmask-
set - nane> ...

LOOPIF..MASKEDBY is true for words in the list where al the bits set in the 16-bit mask or a
gate in <bi t mask- set - name> are present in the word being tested. For the latter case the gate
number passed is placed in the reserved word GATE.

Gate-testing operator (GATEDBY)

LOOPIF..GATEDBY istruefor each case where amember of <par anet er - | i st > falswithin
the set of gates associated with <gat e- expr > . Whenever a gate is passed the gate number will be
placed in the reserved variable GATE. The data defining the gate limits within the gate-map is spe-
cified inthe *DATA section.

LOOPI F <l i st - expressi on>GATEDBY <1D- gat e- expr > ...

In the above case each member of the parameter-list found in the event is tested against the gate-
map specified,

Example

* DATA

GATEMAP 1D MASS130A[0: 600]

(100 180) (160 270) (250 340) (330
460) (440 560)

* COVMMANDS

46

*COMMANDS

CREATELI ST RLI ST1 FROM GE
LOOPI F RLI ST1. E2 GATEDBY MASS130A NEW.| STX=RLI ST2 {

LOOPI F RLI ST2. E2 GATEDBY ... {
}

}

LOOPI F <l i st -expressi on > <l i st-expressi ony> GATEDBY <2d- gat e- expr essi on>

LOOPIF <list-expression> <sortword> | (<expression>) GATEDBY
<2d- gat e- expr essi on> ... Y Y
LOOPIF <sortword > | (<expression >) <list-expressi on > GATEDBY

<2d- gat e- expr essi on> ...

For the 2D gate-map-test format one or both of the parameters to be tested must be a list-expression,

Example

* DATA

GATES 2D MAPL[64, 64]

(12 20 20 22 23 26 19 31 17 27 16 23) (19 24 25 21 30 27 31 38
29 40 26 38 23 26 21 24) (35 28 38 32 40 33 42 41 40 45 38 41
37 39 36 32)

* COMVANDS

SUMEN = . ..

CREATELI ST GELI ST FROM CE

LOOPI F CGELI ST. E2 SUMEN GATEDBY MAP1 NEW.| STX=QUTLI ST1 {
LOOPI F QUTLI ST1. E2 GATEDBY . ..

47

*COMMANDS

Select command

SELECT (<expr essi on>)

#(<val ue>) <st at enent s> #r
(NOMATCH) <st at enrent s>

SELECT (<expr essi on >, <expression
#(<val ue >, <val ue >)<st at ermnts>%tr
(NOMATCIEI) <st at er’rent s>

The SELECT command is used for matching specific parameter values to specific sort commands.
This alows gate numbers passed by any of the gate-map-test commands to be matched to specific
update commands.

Each combination of values specified within the SELECT command must be specified only once
but any number of sort commands can be associated with it.

The SELECT command evaluates the expression (or expressions) to obtain a value (or values)
which is then compared with the sets of values following. If one set matches then any associated
commands are executed. If no values match then the commands associated with (NOMATCH) are
executed, if it has been specified.

After the sort commands for a specific combination have been executed command execution passes
to the command following the SELECT command.

Example

Consider updates after a gate-map-test command. See if...gatedby and loopif...gatedby commands.

| F GAVA GATEDBY BANDL {

SELECT (GATE)
(1) I NC SPECL(GAMA)
Egg I NC SPECA(GAVA)

~

I NC SPEC5(GAMR)
i NC SPECO(GAMR)

Example

or correlated updates after two gate-map-test commands:

| F GAVB GATEDBY BAND2 {

SELECT(GATEL, GATE)
(1,1) {
I NC MAT1(GAMA, GAVB)
I NC SPEC12(GAMB)

(1,2) %NC MAT2(GAVA, GAVB)
(NOVATCH) ENDEVENT

48

*COMMANDS

In the second example, if no gate combination matches those provided by the SELECT command
then ENDEVENT is executed so no more commands are processing for that event.

49

*COMMANDS

Goto command

GOTO<I abel - name>
LABEL <I abel - name>

The GOTO command allows event processing to be passed forwards only in the *COMMANDS
section to a point specified using LABEL .

GOTO may not be used to jump into aDOL OOP, I F or SELECT command.

Example

| F GAMA GATEDBY GREC2
GOTO BAND1

LABEL BANDL

50

*COMMANDS

Arithmetic operations

<sortwor d>=<expressi on>

<array- name> (<x- i ndex>) = <expression>

<array- name> (<x-i ndex>, <y-i ndex>) =<expressi on>

<array- name> (<x-i ndex>,<y-i ndex>,<z-i ndex>)=<expressi on>
where <expr essi on>is

<oper and> # <oper at or > <oper and> #r

<oper and>iseither a<sor t wor d>or a<const ant >.

and <x- i ndex>, <y-i ndex>and <z-i ndex>

may each be one of <sor t wor d> or <i nt eger const ant >

Evaluated expressions may be assigned to a sortword variable, i.e. a word, long or float type vari-
able.

C precedence determines the order in which operations are performed in the absence of parentheses.
Up to 6 nested pairs of parentheses are allowed.

A floating point randomised value in the range 0.0 to 1.0 may be obtained by specifying the re-

served float variable RANDOM. A random integer value in the range O to 32767 may be accessed
using the reserved word IRANDOM.

Arithmetic Operators

+-*/mod <> & ior xor

where

mod is the integer modulus operator (a mod b)

& ior xor are logical bitwise operators

<> are left and right arithmetic shift operators respectively which need to be followed by an integer value
between 0 and 15

(to specify the number of places to the left or right by which the bits are to be shifted).

Maths functions

SQRT EXPABSNOT LOG LOG10 SIN COSTAN ASIN ACOSATAN

The argument should be specified in parentheses following the function name.

Example

+ EXP(A+ (B* X)) ...

Command Functions

GROUP <$- wor d>

returns the value of the group number of group identifier $-word e.g. group($x).

51

*COMMANDS

NWORDS <$- wor d>

returns the number of itemsin the group identifier $-word.

POWM(<expr essi on >, <expr essi on2>)

returns the value of <expressi on>to the power <expressi on,>.

NUVBER (<par anet er - | i st - nanme>)

returns the number of words in the named list which are present in the event.

<array- name> (<x-i ndex>)
<array- name> (<x-i ndex>, <y-i ndex>)
<array- nanme> (<x-i ndex>,<y-i ndex>,<z-i ndex>)

returns the contents of an array location where the array must be initialised using VALUEARRAY
inthe*DATA section. Each channel can be specified by a sortword or integer constant.

NBI T (<i nt eger - expr essi on>)

evaluates the number of bits set in the 16-bit expression.

<sortwordl>:<sortword2>)

evaluates 2 16-bit words as a 32-hit integer.

TI MESTAMPOF (<sor t wor d>)

evaluates the 64-bit absolute timestamp associated with <sortword> , which has to be a raw data
item. The value is returned as a LONGLONG data type. Currently only supported for GREAT
TDR format input data.

52

*COMMANDS

Gain command

GAl N<sortwor d>#FACTOR <shi ft-factor>#

GAlI N<sor t wor d><gai n- arr ay- name> INDEXED <i ndex>#FACTOR<shi ft-factor>#
GAl N<sortword><array-|ist-nanme>[<array-i ndex>] INDEXED <i ndex> # FACTOR
<shift-factor>#

GAI N <group-paramlist-name> . <item name> <gai n-array-nane> # FACTOR
<shift-factor>#

GAIN <group-paramlist-nane> . <itemnane> <array-list-name> [
<array-index>]#FACTOR<shift-factor>#

where<ar r ay- i ndex> and <i ndex> are expressions.

Gain coefficients must be specified inthe *DATA section.

A sortword can be gain matched using coefficients stored in a GAINWORD element (first format);
the <i ndex> " element of <gai n- array- name> (second and third formats). For the third
format, the gain array must be a member of an ARRAYLIST in the *DATA section, where
<array-index> specifies the gain array used viait'sindex in the arraylist. Indices start from zero.

In the fourth format of the command the words in <group-param-list-name> are all gain-matched
with the corresponding parameters in <gain-array-name> indexed by absolute qroup number, i.e. if
the particular item in group nis present in the event it is gain matched with the n N set of gain match-
ing parameters defined in the gain array. The fifth format is similar to this but allows the particular
gain array used to be selected via an index into an arraylist where <array-index> can be an expres-
sion.

An expression may also be supplied as an optional <shift-factor> argument to be applied to each of
the gain coefficients. This is useful for making a Doppler shift correction when the origina gain
coefficients have been derived from source measurements.

Example

The value of aword is modified according to:

<word> = a + b* <word> + c* <word> 2

The calculation includes a randomisation process which adjusts the result by at most one channel in
order to produce a smooth function.

Gain drifts may be automatically adjusted by adding an *f AUTOGAIN section.

Example

* FORMATS

ge[1: 35] (e20, e4,ft, co, bgoe, bgot, hi t pat)
* DATA

GAI NARRAY gegai ns

1 (-.3 0.09 0.004)

2 (0.6 0.10 0.002)

* COVMANDS
CREATELI ST gel i st FROM ge
GAI N gel i st.e4 gegains

53

*COMMANDS

will gain match all the E4 adcs associated with each GE group number.

Example

* FORMATS

cl overs1[81:110] (bgop, Al, A2tag:3, A2dat: 13, A3)

* DATA

GAl NARRAY segA I'l segnent A
81 (-6.4294434 0.9705133 0. 0000000)
82 (-1.8133545 0.9134621 0. 0000000)
83 (2.0946655 1. 0252383 0. 0000000)

* COMVANDS

CREATELI ST clistl FROM cl oversl
| oopi f $cl=clistl valid
{

groupno = group($cl)

i nc cl groups(groupno)

sel ect ($cl. a2tag) I'l check tag to see which seg fired
(1) { I'l segment A

gain $cl. a2dat segA i ndexed $cl

(2) I'l segnment B
gain $cl. a2dat segB i ndexed $cl

(3) I'l segnment C
gai n $cl. a2dat segC i ndexed $cl

(4) Il segnent D
gai n $cl. a2dat segD i ndexed $cl
}

will gain match all the a2dat adcs associated with each clover sl group number, where the gainarray
used is found by checking a2tag to determine which element of the detector has fired.

Example

CREATELI ST gl i st FROM cl over
LOOPI F $q=ql i st VALID

detid = GROUP($q) - 30

caprmult = NWORDS($q)/ 3

SELECT (capnult)

(1) { I Single hit
capid = $q. Atag

theta = qthetas(detid, capid)

gf ac (2.0)/((1.0)+(cos(theta)*beta))
GAI N $q. Agehi gh qgai ns[deti d] | NDEXED capid FACTOR gfac ! GM ener
GAI' N $q. Ageti me qgai nst[detid] | NDEXED capi d lgain match TAC
I NC esun{ $q. Agehi gh)
(2) { ! Doubl e hit
capi d0 = $q. At ag
capi dl = $q. Btag
theta0 = qthetas(detid, capi d0)
thetal = qthetas(detid, capi dl)
theta2 = (thetaO + thetal)/2.0
costh = cos(theta2)
gfac = 2.0/ (1.0 + costh*beta)

GAI N $q. Agehi gh qgai ns[detid] | NDEXED capi d0 FACTOR gf ac

GAI N $q. Bgehi gh qgai ns[detid] | NDEXED capi d1 FACTOR gf ac

GAI N $q. Ageti me qgai nst[detid] | NDEXED capi dO lgain match TAC
GAI N $q. Bgeti me qgai nst[detid] | NDEXED capi d1 lgain match TAC
I NC esum($g. Agehi gh + $q. Bgehi gh)

54

*COMMANDS

will gain match and Doppler correct all single and double hit energies and times for the group
clover, updating the shifted energies into the spectrum esum.

55

*COMMANDS

Invalidate command

| NVALI DATE <gr oup-i denti fi er>
where<gr oup-i dentifier>is
<gr oup- nane> or <$- gr oup- vari abl e>

The INVALIDATE command removes al the items associated with the <gr oup-i denti fi er >
specified from the current event.

Example

| NVALI DATE GE[12]

would remove group 12

Example

| NVALI DATE ~ RMB

would remove the RM S group

Example

| NVALI DATE ~ $GROUPX

would remove the group referenced by $GROUPX.

56

*COMMANDS

Groupfilter command

GROUPFI LTER <gr oup- nanme> # FIXEDLEN= <| engt h> # # VARLEN= <l engt h> # # ITEM=
<itemoffset>#<filter>

where <gr oup- name> is defined here.

FI XEDLEN and VARLEN require integer values to define the fixed and variable number of words in the
group definition. If omitted they default to zero.

<i t em of f set >istheindex of theitem in the group, starting from zero, that is being tested
and<filter>is

KEEP | REJECT (<expr >, <expr>)

The GROUPFILTER command removes all the items associated with each member of <gr oup-
name> from the current event that do not satisfy the condition specified by <fi | t er >

Example

GROUPFI LTER ~ CLUST VARLEN 3 | TEM 1 REJECT (0, 0)

would remove al members of group CLUST where the 2nd item for each subset of 3 items was
zero.

57

*COMMANDS

Order command

ORDER wor dl wor d2 ... UP| DOVN
where UP outputs the values in increasing numerical order
and DON outputs them in decreasing numerical order.

The ORDER command orders sortwords according to their value.

Example

ORDER GAML GAMP2 GAMB DOV

will reassign the highest value from GAM 1, GAM2 and GAM3 to GAM1, the next highest to
GAM 2 and the lowest to GAM 3.

58

*COMMANDS

Routines

CALL <routi ne- name># (<ar gunent >#<ar gunment > #r) #
ROUTI NE <r out i ne- nane> # (<ar gunent > # <ar gunent > #r) #
where <ar gunent >isasortword, i.e. a

WORD, LONG, LONGLONG or FLQOAT type.

A ROUTINE is aset of sort commands which are physically placed after the main command sec-
tion and accessed by a CALL command within the main section. The last command inaROUTINE
should be END or ENDEVENT. END returns event processing to the command following the
CALL command. when the routine has been executed whereas ENDEVENT terminates processing
of the current event at that point in the sortfile.

A routine must be called at least once before it is defined in the sortfile so that the argument types
can be determined, i.e. word, long or float, before the routine is specified. The current maximum
number of arguments that may be passed to a routine may be found in Appendix A. If a sortword ar-
gument is specified any operation performed on that parameter within the routine will result in a
corresponding change in value of the sortword upon returning from the routine,

Example

| F GELI 3 GATEDBY GLI ST2 {
SELECT(GATE) {
(1) CALL ABC(SUMEN, | NDEX)
(2) CALL XXXXYYYY

I
END
ROUTI NE ABC(ENERGY, OFFSET)

CALL YXOXXXYYYY
END

ROUTI NE XXXXYYYY
AR

where SUMEN and INDEX are sortwords, ENERGY and OFFSET are dummy sortword argu-
ments local to the routine ABC.

Calls may be nested up to a maximum level of 8, but routines must not be called recursively, i.e. a
routine may not call itself or one that directly or indirectly calsit. A routine must be called at least
once before it is specified, i.e. at least one CALL statement for a given routine must occur before
the ROUTINE statement in the sortfile.

59

*COMMANDS

Exec Command

EXEC<function-nane>[<sortarg>]r#INIT[<initarg>]r#

where

<f unct i on- name> isthe name of the external command,

<sortar g>risalist of runtime arguments from the following list, which are passed as the variable ad-
dress...

<sortword>, <spect runp, <i ndexed- spect r une ,map, array, <gr oup- nane[nunber] >,
<initarg>risalist of initialisation arguments to the function, e.g. filenames, that are passed asis
without change.

Note: Newlines are not alowed within this command.

The EXEC command allows externally defined subroutines to be accessed from the sort. It allows
different sorting and storage algorithms to be used via the sort language.

<f uncti on- name> is a string by which the new external routine is known. The arguments asso-
ciated with <f unct i on- nane> are specific to the corresponding routine. <f unct i on- nane>
will be forced to be LOWER-case, see example below.

The return code of the routine is tested for success. A non-zero return code will stop processing the
current event at that point.

There are two sets of arguments, associated with the two routines defined below in the C language

<functi on-nanme>(<sortarg,>,..)
<functi on- nanme> _init (<i ni tar 9,>.)

The <f unct i on- nane> _init routine is optional, and will only be executed if the init section of
the exec command is specified. If present, the init routine will be executed once only before any
events are processed. The current maximum number of arguments that may be passed to an exec
routine may be found in Appendix A.

Example

exec printit sortword

will require the following C code ...

int printit(short *sortword)

printf("Sortword value = %\ n", *sortword);
return O;

}

Deprecated command ...

USER<f uncti on- name> ([<sortarg>]r)

where <f unct i on- nane> is the name of the external command, which will be forced to be UPPER-
case.

<sortarg>risalist of runtime arguments, e.g. sortwords, spectrum names, which are passed as the

60

*COMMANDS

variable address.

Synchronization

If it is necessary to execute a routine to tidy up after the sort has finished, but not yet exited, a hook
mechanism is provided for that purpose. This allows a user-provided routine to be executed at the
sort program flushing stage immediately before exit. The mechanism to connect the routine into the
sort program is to execute a routine called flush_hook_add() in the <function-name> _init routine.

Such amechanism could be useful if the current state or a set of variables needs to be saved.

<f 1 ush_hook_add> (<function-name> _tidy)

Example

exec calculate sortword init

will require the following C code ...

cal cul ate_tidy()
/* Tidy up calculate before exit */
return 0;

cal E:U| ate_init()

flush_hook_add(calculate_tidy());
return O;

}

61

*COMMANDS

Doloop command

DOLOOP <l oop count>FROM <initial |oop value>TO<final |oop val ue> STEP
<l oop step size>

where <l oop count >isasortword, and integer or sortword values may be used to specify the loop ini-
tial, final and step values.

DOLOOP commands may be nested.

The DOL OOP command allows <st at enment s> to be executed a defined number of times with
an incrementing variable. The loop will always be executed at least once since the loop count vari-
able will be incremented at the end of each loop. This variable, if omitted, is an automatically cre-
ated word named L OOP. The variable may be used freely within the loop,

Example

DOLOOP LOOP1 FROM 1 TO 8 STEP 2
{

NEWAORD = POSI TION * LOOP1
I NC NEWAORD POSSPEC

}

will execute the commands within curly braces for values of the word LOOP1 of 1,3,5and 7.

Example

The loop values may be negative ...

DOLOOP | NDEX FROM 7 TO -2 STEP -3

will execute the contained commands for values of the variable INDEX of 7,4,1 and -2.

Example

To exit from aloop before the loop variable has reached the final loop value the IF...GOTO com-
mand should be used ...

DOLOOP FROM X1 TO X2 STEP | {

IF ...
GOTrO ABCD

}
LABEL ABCD:

62

*COMMANDS

Output command

The OUTPUT command allows whole events or data words, 16-bit sortwords and parameter lists to
be output on up to 4 different streams. The output <st r eam nunber > must be an integer value
between 1 and 4 (inclusive). The data will automatically be output in Eurogam-style format with an
event-header, etc. per event.

QUTPUT <st r eam nunber > EVENT

This form of the command will output all elements of the event as defined in the *FORMATS sec-
tion. Note that any data items in the event, but not defined in the *FORMATS section, will not be
output.

Although several such statements can be included (e.g. within if clauses), only the first statement
reached will be executed.

Example
SELECT (1)
(1) QUTPUT 1 EVENT
(2) QUTPUT 2 EVENT
(3) OUTPUT 1 EVENT

QUTPUT <st r eam nunber ><out put - par anet er >

where <out put - par anet er > may be one of the following:

<si ngl e- par anet er - wor d>

<gr oup- par anmet er - wor d>

<gr oup- parameter-1ist>

<gr oup- parameter-word>(<itemlist>)

<group-paraneter-list>(<itemlist>)

where<i tem | i st > isasubset of the origina item list associated with the group that was declared in
the* FORMATS section.

This command can be used to output partial event components and generated simple variables.

Example

* FORMATS

TRl G 255] (MUSER, MIAC)

GE[1: 54] (E1, E2)

* COMMANDS

OUTPUT 1 TR G(MIAC) GE(E2)

If WORD type variables are output in the format specified above they must also be defined with an
associated address to make them simulate real ADCs. See Sortwords section.

Note

If any commands have been used to alter any event parameters, e.g. GAIN, INVALIDATE or arith-
metic operations, prior to OUTPUT EVENT then the altered values will be output.

63

*COMMANDS

QUTPUT <st r eam nunber > GROUP <gr oup nunber>([<itemlist >]r)
where <gr oup number >isan integer or sortword.
where<i tem | i st >isalist of sortwords.

Example

OUTPUT 1 CROUP 234 (A B)

This command can be used either to output an existing group with a modified item list, or a new
group.

Care must be taken that group numbers are not duplicated within an event. The following exampleis
illegal if group 15 is present in the raw data, but would not be checked for by the compiler.

Example

OUTPUT 1 EVENT
OUTPUT 1 GROUP 15 (A, B, O

*COMMANDS

Endevent command

ENDEVENT

ENDEVENT terminates event processing at this point in the sortfile. It may be used anywhere in
the commands section. See also the Routine command.

65

*COMMANDS

End command

END

END is used to specify the end of the main command section prior to any routines or the end of a
routine. If used at the end of a routine then during execution event processing will pass to the com-
mand following the point from where the routine was called after the routine has been executed.

Example

* COMMANDS

END

Example

* COMVANDS

IR
ROUTI NE

ENREE
ROUTI NE
IR

66

*COMMANDS

Pause command

PAUSE

The Pause before each event feature in the Run window causes a temporary halt in event pro-
cessing at a point just before executing the first event command. Pressing the resume button allows
event processing to occur upto the next pause point. If the Pause before each event button is un-
checked, then resume will alow event processing to continue without further pauses.

The pause command works in the same way as the Pause before each event feature in the Run
window, except that processing is paused at the point the pause command is executed. It may be
used anywhere in the commands section.

If the pause command is placed inside a conditional statement, then the pause may be used to in-
spect spectra and variable values after some defined set of circumstances. Hence it can be a useful
diagnostic aid.

The pause can be turned on and off by setting a global sortword in the *DATA section. See the ex-
ampl e below which uses the sortword pauseflag.

Example

* COMMANDS
i f péhéefl ag gt 0 pause

END

67

*RUNFILES (offline analysis only)

Statements in this section allow input tape or disc filesto be specified.

<t ape-vol une- nane><fil e-nane>#<start-bl ock>#<fini sh-bl ock>##

<t ape-vol une-nane><file-specifier>#,<fil e-specifier>#

where

<t ape- vol une- nane> isthe tape name or |abel

<f i | e- nane> isthe name of afileto be sorted on the tape

and<fil e-specifier>canbe

<fil e-nane>

<file-pattern>

or arange:

<file-nane >-<file-nanme_>

which will sort'al filesfrom<fi | e- name >to<fi |l e- name_>inclusive.

If <st art - bl ock> isgreater than zero, tﬁat number of blocks will be skipped at the start of the file. If
<fini sh- bl ock> is greater than <st art - bl ock>, processing will stop at that point, else continue
to end of file.

<fil e- pattern>may consist of thewildcard characters *™*" to match any character combination
and ~?" to match a single wildcard character,

e.g. CAL* to sort any filename beginning with the letters "CAL", RUN2? to sort any filename be-
ginning with the characters "RUNZ2" and followed by one further character.

A large subset of the characters defined in the ANSI tape standard X 3.27-1987 are recognised:
alphanumeric (A to Z, 0to 9)

and the following non-alphanumeric characters:
"&()+-.l<=>_

Names must start with an alphanumeric character.

The volume name is contained in a field 6 characters long and the file name contained in 17 charac-
ters. For non-ANSI format tapes, e.g. ones with no file headers, filenames of RUNxx should be used
where xx denotes the file number on tape. For unlabelled tapes, the same convention using TAPEXXx
should be used to distinguish between different volumes.

Example

* RUNFI LES

SNOO1 RUNO1

SNOO2 RUNOZ2- RUNO4, RUNO6- RUN15, RUN17, *
SNOO3 RUN21 5000 9999999

SNOO03 RUN22

SNOO3 RUN23

SNO04 *

In this example the whole of file RUNOL on tape SN0O1 would be sorted, followed by files RUNO2
up to RUNO04, RUNO6 up to RUN15, and RUN17 onwards on tape SN0O02. Any files not included
in the specified ranges, e.g. RUNO5, are omitted. File RUN21 on tape SNOO3 is sorted from block
5000 onwards, followed by files RUN22 and RUN23 and the whole of tape SNO0O4.

68

*RUNFILES (offline analysis only)

Disc files may be specified as follows:

DI SC<fil e-nane>#<start-bl ock>#<fini sh-bl ock>##

where

<fil e-specifier>canbe

<fil e-nane>

<file-pattern>

If <st art- bl ock> isgreater than zero, that number of blocks will be skipped at the start of the file. If
<fini sh- bl ock> is greater than <st art - bl ock>, processing will stop at that point, else continue
to end of file.

<fil e-pattern>may consist of thewildcard characters ™ *" to match any character combination
and ~*?" to match a single wildcard character, in the same way as for tapes above. If afull disc-file
pathname is given, then wild-card characters may only appear in the file-name, and not in the direct-
ory name(s).

Example

* RUNFI LES

DI SC /di scl/calib/eul52/runl

DI SC /di scl/calib/eul52/run3 1 100
DI SC /di scl/calib/eul52/run2*

69

Constraints

70

Constraints

Reserved words

Thisisthelist of names that should not be used for user-defined arrays, spectra or sortwords.

ABS

ACOS
ANGLES
ARRAYLIST
ASIN

AT

ATAN

CALL
CENTROIDS
COPYGAIN

COos
CREATELIST
DEC
DELTAS
DEVIATION
DISC

DOLOOP
DOWN
ELLIPSE2D
ELLIPSE3D

ELSE

END
ENDEVENT
EQ

EVENT
EXEC

EXP

EXTRACT
FAILS
FACTOR
FIXEDLEN
FLOAT
FROM

GAIN
GAINARRAY
GAINWORD
GATEARRAY

GATEDBY
GATEMAP
GATES
GOTO
GROUP
GROUPFIL-
TER

GT

IF

INC
INCBITS

INDEXED
INDEXED
INDEXED
INIT

INTO
INVALID
INVALIDATE

IOR
IRANDOM
ITEM
KEEP
LABEL

LE

LOG
LOG10
LONG
LOOPEX-
TRACT
LOOPFAIL
LOOPIF
LT

MASK
MASKEDBY
NBIT

NE
NEWLISTX
NEWLISTY
NOT

NOMATCH
NUMBER
NWORDS
OFFSET
ORDER
ORDERED
OUTPUT

PASSES
PEAKAREA
PEAKS
POW
RANDOM
REJECT
REVERSED
ROUTINE
SAMPLE
SAVE

SELECT
SET

SIN
SQRT
STEP
TAN

TO

UP
USER
VALUE-
ARRAY
VALID
VALUE
VARLEN
VOVERC
WORD
XOR

71

Constraints

Predefined sortwords

These are sortwords that are automatically defined for every sort. They may be used in the same
way as normal sortwords.

STREAM

GATE

WORDX

WORDY
BLOCK_NUMBER
RUNFILE_NUMBER

72

Constraints

Maximum values

Name length 30
Number of Spectra 4096
Disc-based update Spectra 32
Spectrum length per dimension 65536
Number of gain names 512
Number of gate names 512
Number of arrays 128
Number of arraylists 128
Number of single adcwords 200
Number of groups 1024
Number of sortwords 512
Number of lists 64
Number of routines 64
Number of routine args 8
Number of exec/user args 64
Number of runfiles 255
Files per wildcard expansion 4096

73

Data file examples

74

Datafile examples

Eurogam phase 2 autogain sort

A typical autogain sort for phase 2...

* FORMATS
ge[1: 35] (e20, e4,ft, co, bgoe, bgot, hitpat)
cl overs1[81:104] (bgop, Al, A2tag:3, A2dat: 13, A3)
cl overs2[111: 134] (bgop, Al, A2tag: 3, A2dat: 13, A3,
Bl, B2tag: 3, B2dat: 13, B3)
* DATA
11 gain coefficients cal cul ated
11 from Eul52 source spectra for v/c=0.0105
GAl NARRAY gphasel I'l phasel detectors
1 (3.054180 0.985850 0.000000)
2 (4.106800 1.053940 0.000001)
3 (3.101520 0.888870 0.000000)

GAl NARRAY segA I'l segnment A
81 (-5.956440 0.968458 0. 000000)
82 (-2.043540 0.912272 0.000000)
83 (1.866570 1.023430 0.000000)

GAl NARRAY segB I'l segnent B
81 (-4.002160 0.922770 0.000000)
82 (-4.108340 0.908958 0.000000)
83 (-3.820860 1.028980 0.000000)

GAl NARRAY segC I'l segnent C
81 (-0.804466 0.927298 0.000000)
82 (-2.431520 0.922218 0.000000)
83 (-1.492300 1.027120 0.000000)

GAl NARRAY segD 'l segnment D
81 (-8.195100 0.950084 0.000000)
82 (0.832342 0.884106 0.000000)
83 (-1.531620 1.039610 0. 000001)

GAl NARRAY segAnod
GAl NARRAY segBnod
GAl NARRAY segCnod
GAl NARRAY segDnod

]
I EUROGAM PHASE2 ARRAY CLOVER ANGLES

I USED BY AUTOGAI N ROUTI NE TO CORRECT GAI N CCEFFI CI ENTS TO ADDBACK
I CLOVER DATA

11
|1 DECLARE SPECTRA FOR USE | N *AUTOGAI N SECTI ON
11

xaut og[1: 35] 4096 32

xaut oa] 81: 104] 4096 32
xaut ob[81: 104] 4096 32
xaut oc[81: 104] 4096 32
xaut od[81: 104] 4096 32

|| DECLARE SPECTRA FOR USE | N * COWANDS SECTI ON

VALUEARRAY eur ogani 81: 104] Il clover m dpoint angles
104.5 75.5 104.5 75.5 104.5 75.5 104.5 75.5 104.5 75.5 104.5 75.
75.5 104.5 75.5 104.5 75.5 104.5 75.5 104.5 75.5 104.5 75.5 104
VALUEARRAY del t AB[81: 104] Il delta angles for segnments A and B
4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4,
-4.5 4.5 -45 45 -45 45 -45 45 -45 45 -45 4,
VALUEARRAY del t CD[81: 104] Il delta angles for segnents C and D
-4.5 4.5 -45 45 -45 45 -45 45 -45 45 -45 4,
4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4.5 4.5 -4,

ool oo oG

75

Datafile examples

gantotl 4096 32
gant ot 2 4096 32
cl 2ab 4096 32
cl 2ac 4096 32
cl 2ad 4096 32
cl 2bc 4096 32
cl 2bd 4096 32
cl 2cd 4096 32

* AUTOGAI N
L T T T T T O A A O N A

I
11 CHANGE PEAK VALUES TO CORRESPOND TO 2 PEAK POSI TIONS I N YOUR DATA
I . FOR 4MeV GAI N CCEFFI CI ENTS

I
N
i nit gphasel from xautog centroids 393.0 8.0 735 10.0

init segA from xautoa centroids 393.0 8.0 735 10.0

init segB from xautob centroids 393.0 8.0 735 10.0

init segC from xautoc centroids 393.0 8.0 735 10.0

init segD from xautod centroids 393.0 8.0 735 10.0

|
11 VOVERC FOR EXPERI MENT (0 < voverc < 1.0)
I
I

!

11 CORRECT GAINS TO USE FOR ADDBACK WHENEVER AUTOGAI NED CCEFFI CI ENTS
11 ARE SHI FTED
I
I

copygai n from segAl 81: 104] to segAnpnd[81: 104] angl es eurogam deltas delt AB
copygai n from segB[81:104] to segBnod[81: 104] angl es eurogam deltas delt AB
copygai n from seg(81:104] to segCnpd|[81: 104] angl es eurogam del tas del t CD
copygai n from segD[81: 104] to segDnod[81: 104] angl es eurogam del t as del t CD

createlist gelist fromge
i nc xaut og($aut o=gel i st.e4) indexed $auto

createlist clistl fromcloversl
| oopi f $cl=clistl.a2dat valid

{
sel ect ($cl.a2tag)
(1) { I'l segment A

i nc xautoa($cl.a2dat) indexed $cl
}
(2) { I'l segnment B
I nc xautob($cl. a2dat) indexed $cl
}
(3) { I'l segrment C
i nc xautoc($cl.a2dat) indexed $cl
}
(4) | I'l segnment D
inc xautod($cl.a2dat) indexed $cl
}
}
1] = o 1 S) 5 e e
|1
|| THESE COVMANDS ARE EXECUTED FOR EVERY EVENT
N}
L e o m e e e e e e
* COMVANDS

76

Datafile examples

|
11 GAIN MATCH PHASE 1 DETECTORS
I
I

|
11 GAIN MATCH CLOVER DETECTCRS W TH SINGLE HI TS
I
I

| oopi f $cl=clistl.a2dat gt O

{
groupno = group($cl)
ecE ($cl. a2t ag)

se

(1)

(2)

(3)

(4)

}

gain $cl. a2dat segA i ndexed $cl

gain $cl. a2dat segB i ndexed $cl

gain $cl. a2dat segC i ndexed $cl

gai n $cl. a2dat segD i ndexed $cl

}

{
;nc gant ot 1($cl. a2dat)

oopi f $cl=clistl. a2dat gt O new istx=clistla

segnent A

segnent B

segnent C

segnment D

sinpl e coeffs . AAB, CGD

corrected coeffs :

GAI N MATCH CLOVER DETECTORS W TH DOUBLE HI TS

A-C, A-D B-C, B-D

createlist clist2 fromclovers2
| oopi f $c2=clist2.a2dat gt O

ff E$02.b2dat) gt O

gai ngr
sum =

p = group($c2) - 30
0

sel ect ($c2.a2tag, $c2. b2t ag)
{

(1,2)

(1,3)

(1,4)

(2,3)

(2,4)

gai n $c2. a2dat segA i ndexed gai ngrp
gai n $c2. b2dat segB i ndexed gai ngrp

sum = $c2. a2dat + $c2. b2dat
i nc cl 2ab(sum
}

{

gai n $c2. a2dat segAnond i ndexed
gai n $c2. b2dat segCnod i ndexed
sum = $c2. a2dat + $c2. b2dat

i nc cl 2ac(sum

{

gai n $c2. a2dat segAnod i ndexed
gai n $c2. b2dat segDnod i ndexed
sum = $c2. a2dat + $c2. b2dat

i nc cl2ad(sum

}

gai n $c2. a2dat segBnod i ndexed
gai n $c2. b2dat segCnod i ndexed
sum = $c2. a2dat + $c2. b2dat
;nc cl 2bc(sum

gai n $c2. a2dat segBnpd i ndexed

gai
gai

gai
gai

gai
gai

gai

' A-C
ngrp
ngrp

' A-D
ngrp
ngrp

' B-C
ngrp
ngrp

't B-D
ngrp

77

Datafile examples

(3,4)

gal n $c2. b2dat segDnopd 1 ndexed gal ngrp
sum = $c2. a2dat + $c2. b2dat
inc cl 2bd(sum

{ 1l CGD
gai n $c2. a2dat segC i ndexed gai ngrp

gai n $c2. b2dat segD i ndexed gai ngrp

sum = $c2. a2dat + $c2. b2dat

inc cl2cd(sum

inc gantot2(sun
}

78

Datafile examples

Auto-gained correlation sort

This example illustrates an offline angular correlation sort where the germaniums have been divided
into separate groups dependent on the angle of the detector in the array. The germanium data is
auto-gain matched.

* FORMATS

TRI GGER] 255] (TYPE, MRAW MVSUP)

GERML58[1: 5] (GE20, GE4, GET, GETBD)

GERML34[6, 11, 13, 17, 19, 23, 25, 29, 35, 36] (GE20, GE4, GET, GETBD)
GERMLOS8] 8, 10, 14, 16, 20, 22, 26, 28, 32, 34] (GE20, GE4, GET, GETBD)
GERMPO[12, 15, 21, 27, 33, 37, 40, 46, 49, 52] (GE20, GE4, GET, GETBD)
GERWF2[38, 39, 41, 42, 44, 45, 47, 48, 50, 51] (GE20, GE4, GET, GETBD)

* DATA
GAl NARRAY E4GAI NS

* SPECTRA
GAI NSP[1: 54] 4096 32
GG158158 3000 2D
G0158 3000 2D
GG134134 3000 2D
G0134 3000 2D

* AUTOGAI N

SAMPLE 20000

PEAKAREA 50

DEVI ATION 1.0

I NI T EAGAINS FROM GAI NSP CENTRO DS 331.4 3 891.0 4
PEAKS

1 654 10 1758 15

2 634 10 1723 15

3 532 10 1440 15

4 607 10 1637 15

48 596 10 1585 15

49 671 10 1811 15

50 605 10 1627 15

51 929 10 2257 15

52 654 10 1765 15

CREATELI ST GE158 FROM GERML58

| NC GAI NSP($A=CGE158. GE4) | NDEXED $A
CREATELI ST CE134 FROM GERML34

| NC GAI NSP($B=CGE134. GE4) | NDEXED $B

| ignore this angle

| CREATELI ST GE108 FROM GERMLO8

I | NC GAI NSP($C=CE108. GE4) | NDEXED $C
CREATEL| ST GE90 FROM GERMBO

| NC GAI NSP($D=GE90. GE4) | NDEXED $D

| ignore this angle

| CREATELI ST GE72 FROM GERM72

| | NC GAI NSP($E=CGE158. GE4) | NDEXED $E

* COMVANDS

GAI N GE158. GE4 EAGAI NS
GAI N GE134. GE4 EAGAI NS

| GAIN GE108. GE4 E4GAI NS
GAIN GE90. GE4 EAGAI NS

| GAIN GE72. GE4 E4GAINS

LOOPEXTRACT GE90. GE4 | NTO RI GHT
{

LOOPEXTRACT GE158. GE4 | NTO BACK
{

I NC GG90158(BACK, RI GHT)

LOOPEXTRACT CGE158. GE4 | NTO BACK1 BACK2

{
| NC GG158158(BACK1, BACK2)
I NC GG158158(BACK2, BACK1) ! make symetric
LOOPEXTRACT GE90. GE4 I NTO RI GHT

{

79

Datafile examples

TNC GG00158(BACKL, R GHT)
| NC G390158(BACK2, Rl GHT)
}
}

L OOPEXTRACT GE90. GE4 | NTO RI GHT
{

LOOPEXTRACT GE134. GE4 | NTO BACK
{

I NC G390134(BACK, RI GHT)

t
LOOPEXTRACT GE134. GE4 | NTO BACK1 BACK2

{

I NC GGL34134(BACK1, BACK2)
I NC GG134134(BACK2, BACK1) I make symmetric
LOOPEXTRACT GE90. GE4 | NTO RI GHT

{
I NC G390134(BACKL, RI GHT)
I NC G390134(BACK2, RI CGHT)

}
t

END

* RUNFI LES
XE122 RUNL
XE122 RUN2
* FI NI SH

80

Datafile examples

Quadsort

This example illustrates an offline double gated sort updating a 2D matrix. The update algorithm is
designed to produce spikeless spectra when slices and projections of the matrix are made. The data
has been compressed so that all groups have a single item represented the gain matched energy
value. The tag bits have been preserved in the first 3 bits of each data word.

| conpressed data sortfile

| doubl e gates updating 2D matri x
!
* FORVATS

gani 1: 134] (tag: 3, e4:13)

* DATA

11 gates for energy=e4/2
GATEMAP 1D gatesl [2050]
(672 680) (1165 1175) (1346 1358)
(1474 1486) (1544 1556) (1686 1698)
(1566 1578) (2036 2048) (998 1006)
(1239 1249) (1433 1443)

* SPECTRA
| == sort spectra ======
mat 2d 4096 2D

* COMMANDS
CREATELI ST gaml i st FROM gam

LOOPI F $c=gani i st.ed4 VALID
$c. e4=%c. e4/ 2

i f (NUMBER(gamist)) LT 4
ENDEVENT

doubl e gated 2D update

Use LOOPI F to decide whether the event satisfies 2, 3 or 4 gates
Then | oop over the appropriate words in event to update matrix
and exit |oop

Update Al gorithm

For mdi mupdate and p gates, words which satisfy gates are g paraneterg
all others are x paraneters. Have 3 possible cases:

1. satisfy exactly p gates -- update mtuples fromx parans

2. satisfy at |least ptmgates -- update mtuples fromg+x parans

3. satisfy pt+k gates, k<= m-- update mtuples which involve <= k g par

for this case:

1. satisfy exactly 2 gates -- update doubles fromlistp2

2. satisfy at least 4 gates -- update doubles from gamnli st

3. satisfy exactly 3 gates -- update g parans with singles fromlistp3

I
I
I
I
I
I
I
I
I
I
I
}
|
I
I
I
|
L

ooPI F gaml i st. e4 GATEDBY gatesl NEW.I STX=li stpl
{

Il >=1 gate
LOOPI F |istpl. e4 GATEDBY gatesl NEW.I STX=li st p2
{

'l >=2 gates
LOOPI F |istp2.e4 GATEDBY gatesl NEW.I STX=li st p3
{

Il >=3 gates
LOOPI F |istp3.e4 GATEDBY gatesl
{

Il >=4 gates
Il ...at least 4 gates satisfied in gamist -- update all paraneters
I NC nmat 2d(gani i st. e4, ganl i st. e4)
GOTO endl oopl

LwiDFAI L

81

Datafile examples

'l =3 gates
Il ...no gates satisfied in |istp3
LOOPI F $a=gani i st. ed4 GATEDBY gatesl
{
I NC mat 2d($a. e4, | i st p3. e4)
I NC mat 2d(| i st p3. e4, $a. e4)
}
I NC mat 2d(|i st p3. e4, i stp3. ed)
GOTO endl oopl
) }
LOOPFAI L
{
Il =2 gates

Il ...no gates satisfied in listp2 so listp2 contains just the x paraneterg
INC mat 2d(| i st p2. e4, |istp2.e4)
GOTO endl oopl
}
}
}

LABEL endl oopl

* RUNFI LES
COVP1 RUN1
COVP1 RUN2
COVP2 RUNS3

* FI NI SH

82

Datafile examples

Quinsort

This example is similar to the previous one except that it contains a triple gate instead of a double
one.

| conpressed data sortfile

| triple gates updating 2D matri X
!
* FORVATS

gani 1: 134] (tag: 3, e4:13)

* DATA

Il gates for energy=e4/2
GATEMAP 1D gatesl [2050]

672 680) (1165 1175) (1346 1358)
(1474 1486) (1544 1556) (1686 1698)
(1566 1578) (2036 2048) (998 1006)
(1239 1249) (1433 1443)

* SPECTRA

| == sort spectra ======
triple2d 4096 2D

* COMMANDS

CREATELI ST ganml i st FROM gam

LOOPI F $c=gami i st.e4 VALID
$c. ed=%c. e4d/ 2

i f (NUMBER(gamiist)) LT 5
ENDEVENT

triple gated 2D update

Use LOOPI F to decide whether the event satisfies 3, 4 or 5 gates
Then | oop over the appropriate words in event to update matrix
and exit |oop

Updat e Al gorithm
For mdi mupdate and p gates, words which satisfy gates are g paranetersg
all others are x paraneters. Have 3 possible cases:

|
|
I
I
I
|
|
|
|
i
I
t
[
|
|
|
|
I

1. satisfy exactly p gates -- update mtuples fromx parans
2. satisfy at least ptmgates -- update mtuples fromg+x parans
3. satisfy p+k gates, k<= m-- update mtuples which involve <= k g par
!
I for this case:
I 1. satisfy exactly 3 gates -- update doubles fromlistp3
I 2. satisfy at least 5 gates -- update doubles from gami st
I 3. satisfy exactly 4 gates -- update g params with singles fromlistp4
I
LOOPI F gaml i st. e4 GATEDBY gatesl NEW.| STX=listpl
{
'l >=1 gate
LOCOPI F |istpl. e4 GATEDBY gatesl NEW.I STX=li st p2
{
'l >=2 gates
LOOPI F |istp2.e4 GATEDBY gatesl NEW.I STX=li st p3
{
'l >=3 gates
LOOPI F | i stp3. e4 GATEDBY gatesl NEW.I STX=li st p4
{
'l >=4 gates
LOOPI F |istp4d.e4 GATEDBY gatesl
1l . ..at least 5 gates satisfied in gamist -- update all paraneters
INC triple2d(gamist.e4, ganlist.ed)
GOTO endl oopl
}
LOOPFAI L
{
1l =4 gates

83

Datafile examples

Il . ..no gates satisfied in |istp4
LOOPI F $a=gamnl i st. e4 GATEDBY gatesl

ri pl e2d($a. e4, i stp4. ed)

NC
NC triple2d(listp4.e4, $a. ed)

) = oy
— —+

INC triple2d(listp4.ed, listpd. ed)
GOTO endl oopl
}

LG)%FAI L

Il ...no gates satisfied in listp3 so |listp3 contains just the x paraneterg

INC triple2d(listp3.e4,listp3.ed)
GOTO endl oopl
}
}
}
}

LABEL endl oopl

* RUNFI LES
COVP1 RUN1
COVP1 RUN2
COVP2 RUNS3

* FI NI SH

I'l =3 gates

	MTsort Language - EDOC033
	Table of Contents
	Introduction
	Feedback

	Data File Format
	General Structure
	Notation
	File Inclusion

	*FORMATS
	Single Parameter Format
	Group Parameter Format

	*TRIGGERS
	*DATA
	Sortwords
	Pre-defined Sortwords
	Gates
	Bitmask gates
	1D gates
	2D gates
	Elliptical gates

	Data arrays
	Value arrays
	Gate arrays
	Gain arrays
	Arrays of arrays

	*SPECTRA
	*AUTOGAIN
	Declarations
	Commands

	*COMMANDS
	List of Commands
	Parameter Lists
	Simple Spectrum update commands
	Indexed Spectrum update commands
	Incbits command
	List generation/extraction commands
	Createlist command
	Copylist command
	Extract command
	Loopextract command
	If...else... command (single sortword environment)}
	Validation test operator (VALID)
	Comparison operators (EQ,NE,GE,LE,GT,LT)
	Filtering operators (PASSES,FAILS)
	Masking operator (MASKEDBY)
	Gate-testing operator (GATEDBY)

	Loopif...loopfail... command (parameter-list environment)}
	Validation test operator (VALID)
	Comparison operators (EQ,NE,GE,LE,GT,LT)
	Filtering operators (PASSES,FAILS)
	Masking operator (MASKEDBY)
	Gate-testing operator (GATEDBY)

	Select command
	Goto command
	Arithmetic operations
	Arithmetic Operators
	Maths functions
	Command Functions

	Gain command
	Invalidate command
	Groupfilter command
	Order command
	Routines
	Exec Command
	Synchronization

	Doloop command
	Output command
	Endevent command
	End command
	Pause command

	*RUNFILES (offline analysis only)
	Constraints
	Reserved words
	Predefined sortwords
	Maximum values

	Data file examples
	Eurogam phase 2 autogain sort
	Auto-gained correlation sort
	Quadsort
	Quinsort

