A Maintainers Guide to MIDASsort

Duncan Appelbe, CCLRC Daresbury Laboratory
Copyright © 2003 CCLRC Daresbury Laboratory, Nuclear Physics Group

Table of Contents

FpLugoTo ¥ 1o o RN PP 1

THRE GUI .t 2
The Sort Control Frame. ... .coouei e 3
The SOrt SEtINGS FIaME ....coiiii e 5
The MEMSAS CONrol Frame. ....c.uuiiiiiii e 6
The SOrt OPtiONS FraME. ......iei e e e 7
The DebUug LeVEISFrame. ........oiieiiiiii e e e e 8
The VIiew Data Frame. ....ccoooiiieeii et e et e e s 9
The User VariablE€S Frame. .......ooiveuuiiii e 10
The Tape Fle INfO Frame. ... e 11
TheDisk FIle INfo Frame. ........ooiiuiiie e 12

(00110 I (0] 2= 1 TP 14

SOt Package LibrariEs. .....c..iieiii i 15
S0 0T PP 15
Program flOW ...o.eeii e 15
ROUtINEStO read the dala ... ... eeee e e e 16
Routinesto decipher the data ..........coouvuiiiiiii e 18
Routines used during the SO ........couu i e 19
Routines Available to thE USEr ... coue e 20

WIHHING SOt PrOGIaMS ...oveiciiiieii et e e e e e e e e e e e e et e e e e e eaneeeees 21
Global Vari@hles ... 21
LS 1 o T PPN 21
USING "FOMIaN" ...ttt ettt e e et e et e e e et e e e ebe e aees 24

B 0] 5 Lo I I K U TUPTRPTRN 24

Revision History

Revision 0.01 Wed Jan 28 09:26:50 2004 dea

Changed the original layout to one slightly more logical.

Introduction

MIDASsort is intended to be a multifuction data sorting package for the MIDAS data AnalysigAc-
quisition suite that is available by http/ftp from the Daresbury Nuclear Physics Group. MIDASsort has
been written to replace SunSort and CSort, both of which are based upon the OpenL ook graphics pack-
age that is no longer supported by SUN. This package should not be confused with MTSort that is sup-
ported by Liverpool Nuclear Physics Group.

The GUI for MIDA Ssort has been written using the MIDAS Tcl libraries, and makes use of the MIDAS
package for its control and to display different histograms.

This document has been written in xml and processed using FOP and the DocBook DTD. The source for
this file and some of the associated scripts can be found in the documentation directory of the MI-
DA Ssort development tree.

The individual elements of MIDASsort can be found in the directory $( M DASBASE) / M DASsor t .

1



A Maintainers Guide to MIDA Ssort

In order to use MIDASsort under Microsoft Windows you MUST have installed cygwin and the gcc
compilers. The system path should be modified to include the C: \ cygwi n\ bi n directory.

The GUI

MIDA Ssort is controled through a GUI, this GUI is launched from the MIDAS base frame using the but-
ton "Sort Tool". Once initiated the software sets up the local sas resource that is required to view spec-
tra, then starts the " Sort Control Frame", see below.

Figure 1. The Sort Control Frame

(A Sort Control Frame (=[x
Sort Setup
Sortile: [4] [l Browse | State DNotChosen
| | Setings | SortOptions |

Input Media [JE] Disc | Data Forma [Jf=3] Grain | Diskinfo |
oskFe[ 000 H State:  Not Selected
Ouput Media =] NULL Data Format =] NULL
Davel [ State:
Spectrum Control
Overvrite Bxisting Spectra [y

Enable Histogramming [Jfi

Sort Control  Halted

Start | Exit
BE |

Once this GUI has been launched it can be used to control all aspects of the sorting mechanism. The re-
lationship between the different frames are shown below:

Figure2. Therelationship bewteen the Sort Control Frame and its daughters




A Maintainers Guide to MIDA Ssort

MIDASsort Settings contes] frame

Corvent pasiion in bk s 20

£2110A5sor: Tape e info
MIDASsart Tape filenfo

50

Nem Fermot B om | S0 [l sowalT W) ek B2 371 |
reefi PR e |

A | Retimy Remove | Clear Quibsee | Cameel |
- |

Thetcl that is used to define the GUI Frames and the associated actions is split between numerous files.
In the main the name of these files relates to the functions that it contains. The main frame is setup from
the file m dassort.tcl while al of the event handlers are defined and associated within the file
click. tcl,whileal of thewidget "help" information is contained within the filem dassort. t xt.

In the following sections, details about the different GUI frames are discussed. When widgets are spe-
cified, they are the widgets defined by the MIDAS tcl library.

The Sort Control Frame.

For ease, the figure below shows the names and functions of the different widgets that compose the Sort
Control Frame.

Figure 3. A synopsisof thewidgetsthat compose the Sort Control Frame.




A Maintainers Guide to MIDA Ssort

FILE

WIDGET BEDITFILE
COMMAND : Calls edit_xlate (vic_edit.tcl)
PURPOSE Allow basic editing/viewing of the sortfile.

FILE

WIDGET : CSMEDIA
COMMAND : Calls input_media (device_ctrl.tcl)

PURP

FILE - midassort.tcl \
WIDGET < CSFMT

COMMAND : Sq
PURPOSE  : Speei

FILE

coMm!

PURPOSE Media to write output to COMMAND : N,

FILE midassort el Wi s

FILE assort.cl WIDGET  : BCOMPILE

WIDGET _: MSORT COMMAND : Calls compile_sortfile (compile_sortfile.tcl)
COMMAND : N/A with no argument

PURPOSE  ; Messago field PURPOSE  : To compile the sortfile

FILE midassort.tel

WIDGET TSORTFILE

COMMAND : Calls tsortfile (tsortfile.tel) with
arg $v (The input filename)

PURPOSE Input the sortfile name and path.

FILE midassort.tcl

WIDGET BBROWSE

COMMAND : Calls browse_sortfile (browse_sortfile.tcl)
PURPOSE  : To provide a graphical chooser to pick the sortfile

midassort.tel

FILE midassorttcl

WIDGET ~ : BSETTINGS

COMMAND : get_settings (get_settings.tcl)

PURPOSE  : Launches a GUI from which dircctories are sct and several options
can be controlled.

FILE midassort.tel
WIDGET ~ :MS
COMMAND : N/A
L PURPOSE To show the state of the sortfile (compiled etc)

FILE + midassort.tc
WIDGET ~ :BSOPTS
COMMAND : sort_opti
PURPOSE  :Launcha

\ viewer, user variables
FILE + midassort.tel

This is enabled when a sortfile
has been chesen.

- midassort.tcl

OSE  : Specifies if the data is to be read from Disc/Tape/Memory

s (sort_options.tel)

P

e global variable data_type

fies the input data format / =

o i S N Do o 2] WU
midassortcl / sl B s WIDGET  : BIMEDIADATA
WIDGET  : CSMEDIAO FILE imidisoricl ____ ppoemomet COMMAND : tape_info (tape_info.(cl)

PURPOSE Launch a GUI to set the files/tape info for the

MAND :N/A WIDGET MSPEC
data to be read from

PURPOSE Messa

/

FILE : midassort.tel
WIDGET CSFMTO

FILE midassort tcl COMMAND :N/A
WIDGET  : CSOS PURPOSE  : Specify the output data format
COMMAND : set overwritespee Sy
PURPOSE  : Do we want (o overwrite
any existing spectra? |
FILE : midassort.tcl
WIDGET  : CBTHIST
COMMAND - setthist Sv FILE midassort.tcl
PURPOSE Do we want to enable WIDGET - BSTART
histograrming of raw COMMAND : lets_go (lets_go.tcl)
data PURPOSE  : Start/restart the sort
FILE dassort tcl
FILE * midassort el FILE midassort tel WIDGET - BSPECTRA
WIDGET : MSRUN and MSRSTATE WIDGET :BSTOP COMMAND + inform sb sfmstart localsas
COMMAND : N/A COMMAND : lets_not_go (ets_not_go.tcl) PURPOSE - Lauach s spectrum broweer
PURPOSE  : Display the status of the sort PURPOSE  : Pause/kill the sort AREOSE ’
FILE - midassort tel FILE . midassort el
WIDGET ~ :LIST WIDGET ~ :BQUIT

COMMAND :N/A COMMAND : leave_sort (leave_sort.tcl)
PURPOSE  : List the output from operations. PURPOSE Destrory the sort GUI's

These widgets are listed below:

MSORT: A message widget.

TSORTFILE: A text widget used to input the path and name of the sortfile to use.

BBROWSE: A button widget that launches a graphical file browser

MS: A text widget that displays the compilation status of the sortfile.

BEDITFILE: A button widget that launches an TCL window that alows the user to perform basic
editing of the sortfile.

BCOMPILE: A button widget that launches a C program that parses the input sortfile, extracts de-
tails of the spectra you wish to create then compiles the sortfile and links in the sort libraries. The
parseing program writes tempory filestothe/ t np/ t cl ( pi d) directory.

BSETTINGS: A button widget that launches the settings control frame.

BSOPTS: A button widget that launches the sort options control frame.

CSMEDIA: A choice-stack widget that allows the user to specify the input data stream. Currently
the available input data streams are "disk", tape, or using the shared memory buffer of the MIDAS
tape server.

CSFMT: A choice-stack widget from which the event decoder is selected.

BIMEDIADATA: A button widget that launches a control frame allowing the user to specify the
Volume/Filenames for either the input tapes or disk files.

CSMEDIAOQ: A choice-stack widget that can be used to specify the output device for data.
CSFMTO: A choice-stack widget allowing the user to specify the format of the data to be written
out.

MSPEC: A message widget.

CSOS: A check-box widget. If selected all spectrawill be overwritten, else they will be added to.
CBTHIST: A check-box widget. If ticked Histograming will be enabled (requiring a configuration
file). Histogramming works with all data formats except the GREAT event handler.

BSPECTRA: A button widget that launches a spectrum browser.

MSRUN: A message widget.

MSRSTATE: A message widget displaying the current status of the sort program.

4



A Maintainers Guide to MIDA Ssort

e BSTART: A button widget that starts/continues the sort program.

e BSTOP: A button widget that pauses/stops the sort program.

» BQUIT: A button widget that destroys the control frame and all visable daughters, then saves the
settings before exiting.

» LIST: A galey widget that displays the messages from some of the programs called by this GUI.

The Sort Settings Frame

This GUI is used to specify the locations/directories in which certain files exist: ranging from the sortfile
directory, to the directory where disk files containg data are kept. In addition it is possible to choose
between GNU and "other" compilers, whether you wish to use the SunSort naming convention, and if
the spectrum memory server should be killed off when the Sort tool is exited from.

It should be noted that al of the variables controlled by this GUI are saved as preferences in the file
$(HOVE) / . mi das/ pr ef er ences.

For ease, the figure below shows the names and functions of the different widgets that compose the Sort
Settings Frame.

Figure4. A synopsisof thewidgetsthat compose the Sort Settings Frame.

FILE : get settings.tcl
) WIDGET  : TSEIMBDIR
FILE - get settingstel  CONMAND - set midasbase $v (click tcl)
WIDGET - MSET PURPOSE  : Set the MIDASBASE variable
) COMMAND : N/A
FILE * get settings.tl PURPCSE  : Message field

WIDGET  : TSETDATADIR
COMMAND ' set sartdatadir $v

(save settings.tcl)
PURPOSE  : Set the directory where the

FIE » get settings.tel
WIDGET : TSETDIR
COMMAND : set directory $v

chtas. MDA sor: Setti < (save settings.tcl)
MIDASsort: Sttings control frame / PURPOSE  : Set the directory where the sort files live.
FILE : get_settings.tel
WIDGET  : TSETGATEDIR A T K e : get.seftings.tel
) . Sor directory o e
COMMAND : ?et ﬁmﬁﬁfv SonDat directary |inctjunsi/spece3/dtydurpple: <_ COI\AI\EAAI&‘ND ze?ganrhmctﬁl;y $v
Save s S. Gainflle directary [hemz/dea o .
PURPOSE  : Set the directory where the ™= Gueie dreciry jrums/iea (save_settings.tcl)
gatefiles are Users Makeflle [hemz/ien PURPOSE  : Set the directory where the gam files live.
Cenfig Teble [NULL
FILE - get._settings tcl __._.—) Use G cnmpuas7|7A Stnsor spestum rane cenvention? FILE : get settings.tcl
e Killmemsas server on Exir? [ T WIDGET - TSETUM
WIDGET  : CBUSEGCC S
COMMAND  set usegec $v lr‘ COMMAND - set._makefilepath $v
(save settings.tcl) ety | (save_seftings.tcl)
PURPOSE  : Ukse GOC compilers PURPOSE  : Set the path to the users makefile
FILE : get settings.tcl FILE : get settings.tcl
WIDGET : BSETREDISPLAY WIDGET : CBSSSNC
CONMMAND : gs-redisplay FILE : get settings.tcl COMMAND : set usesssnc $v
PURPOSE  : Redisplay window WIDGET  : BMEMSASCIRL (save_settings.tcl)
COMMAND : memsas_ctrl PURPOSE  : Are we using the SunSort naming
(memsas_ctrl.tel) cotwvention?
. PURPOSE  : Launch the Memsas
COMMAND : set._kmernsas $v FIIE - get,settings.tol
(gave_seltings.lcl) WIDGET  : TSETTAB
PURPOSE - Kill offthe THEITIES COMMAND : set_configtable $v
daeman o exit (save settings.tcl)
PURPOSE  : Set the name of the configtable
(used for histogrems)

These widgets are listed below:

 MSET: A message widget.

« TSETMBDIR: A text widget that shows where the MIDASBASE enviroment variable is set to,
changing the entry in this field does not do anything.

» TSETDIR: A text widget allowing the directory where the sortfiles live to be set. This variable is

5



A Maintainers Guide to MIDA Ssort

used by the BBROWSE widget on the Sort Control Frame.

TSETDATADIR: A text widget where the directory containing the data to be sorted can be spe-
cified. Thisvariableisused in the "disc" frame.

TSETGAINDIR: A text widget specifying the directory where any gain files reside. This feature is
not currently implemented.

TSETGATEDIR: A text widget specifying the directory in which any GATEFILES reside. This fea-
tureis not currently implemented.

TSETUM: A text widget where the users Makefile can be specified. This makefile isincluded in the
makefile generated at compilation time.

TSETTAB: A text widget used to specify the users configuration table. This Configuration table is
used when data is to be histogramed.

CBUSEGCC: A check-box. If ticked gcc compilers will be used, else the makefile will assume that
"cc" and "f77" are valid compilers.

CBSSSNC: A check-box widget used to specify if the sunsort naming convention is used. Thisreally
only affects lists of spectra that are differentiated only by number. In Sunsort this number is the
spectrum id number. If thiswidget is not ticked then the spectrum name numbering will start at O.
CBKMEMSAS: A check-box used to determine if the memsas daemon that is associated with this
sort will be killed when the sort package exits. (The memsas still remainsif the Sort Control frameis
displayed/minimised).

BMEMSAS CTRL: A button widget that launches the memsas ctrl frame. This GUI is used to
show if any daemons are running on your machine, and their associated ports.

BRESETDISPLAY: A button widget that forces aredisplay of all the entry pointsin this frame.

To kill the frame the [x] has to be used

The MEMSAS Control Frame.

In order to sort spectra using this package a memsas daemon must be running. When the Sort Control
Frame is launched it is determined whether any daemons are running, and if any resources (localsas) are
allocated. If not a daemon is started, this frame displays the running daemons and the allocated re-
sources. It is also posible to kill off memsas daemons using this frame.

For ease, the figure below shows the names and functions of the different widgets that compose the Sort
Settings Frame.

Figure5. A synopsisof thewidgetsthat compose the Sort Memsas control Frame.

FILE memsas_ctrl.tcl
WIDGET MMEMBAS1
COMMAND : NA

PURPOSE  : Message field FILE s memsas_etrltcl

WIDGET - GMEMSASI
COMMAND : NA
PURPCSE - Displays experiment resources currently allocated relating to localsas

TFILE memsas_ctrl.tcl

| WIDGET BMEMSAST

|| COMMAND : memsas_ctrlkill daenon
PURPCSE Sends a SIGTERM to the currently
selected daemon in TMEMSAST

FILE < mensas_ctrltel
WIDGET MVEMBAS2
COMMAND : NA
PURPOSE - Missage field

FILE memsas_ctrltel
WIDGET BMEMSAS3
COMMAND : memsas_ctrl refresh
PURPCSE  : Refresh the window

FILE memsas_ctrl.tcl

WIDGET IMEMSAST

COMMAND ' memsas_ctrl.select S $v

PURPOSE - Displays the memmsas dacmons that are running

FILE :mensas_ctrltel
WIDGET BMEMSAS2
COMMAND : memsas_ctrl leave
PURPOSE - Distroy this window




A Maintainers Guide to MIDA Ssort

These widgets are listed below:

* MMEMSASI: A message widget.

* GMEMSASLI: A galy widget used to display the "localsas’ resources currently allocated to this ses-
sion. The user can't modify any of the values displayed directly.

e MMEMSAS2: A message widget.

« LMEMSASLI: A list widget, used to display al of the memsas daemons currently running on the host
machine. The daemons are identified by portnumber (10230-10249), process ID and the owner. Indi-
vidua daemons can be selected by clicking on them.

« BMEMSASI: A button widget used to send a SIGTERM signal to the selected daemon, thus killing
it, and removing any spectra stored in its shared memory.

e BMEMSAS2: A button widget that destroys this frame.

« BMEMSASS: A button widget that forces aredisplay of the data shown in the frame.

The Sort Options Frame.

As the sort runs there are several options that users would wish to have. These options are controled
from the sort options frame. These options make use of shared memory and can be set before a sort is
started or as the sort runs.

For ease, the figure below shows the names and functions of the different widgets that compose the Sort
Options Frame.

Figure 6. A synopsisof thewidgetsthat compose the Sort Options Frame.

FILE s sort_options.tel
WIDGET  :MFSO
COMMAND : N/A
PURPOSE  : Message field

FILE :sort_options.tel

WIDGET ~ : CSDSO

COMMAND : debug level $v (debug tcl)
PURPOSE  : Do we want to use debug cormrmands?

FILE s sort_options.tel
WIDGET  :BDSO

COMMAND : debug_options (debug tcl)
PURPOSE  : Launch the debug GUI

nMIDASSorI: Sort  ptions

MIDASsort: Sort options control frame

FILE s sort_options.tel

WIDGET : BCFTAB

COMMAND : user var (user var.tcl)

PURPOSE  : Launch the GUI where we
can set variables during the
run.

FILE s sort_options.tcl
WIDGET  :BGAINTAB
COMMAND : Not implemented
PURPOSE  : Set gain values

DabugSm.

User Variables Gainmarching

Gating View RawDara

FILE » sort_options.tel
WIDGET  :BGATETAB FILE »sort_options.tel
COMMAND : Not implemented WIDGET - BVDATA
PURPOSE  : Set user gates COMMAND : view data (view data.tcl)
PURPOSE  : Launch the GUI where we
can lock at the raw data.

Updare delay (s) _—‘Ii‘

FILE s sort_options.tel

WIDGET : CSEDSO

COMMAND : set update: time

PURPOSE  : Set the time interval (seconds) between the refresh on the sort control frame

These widgets are listed below:




A Maintainers Guide to MIDA Ssort

MFSO: A message widget.

e CSDSO: A check-box widget. If ticked the BDSO widget becomes active, allowing debugging to be
enabled.

* BDSO: A button widget that launches the debug levels frame.

» BCFTAB: A button widget used to launch the user_var frame, from which the user can change vari-
ables as the sort runs.

e BGAINTAB: A button widget, not implemented at present.

« BGATETAB: A button widget that is not implemented.

* BVDATA: A button widget that launches the view_data frame, from which the user can see the raw,
unformatted datain the vicinity of the current block position.

* CSDDSO: A choice-stack widget, that allows the user to set the update interval for the sort control
frame.

The Debug Levels Frame.

Given the compelxity of this sort package it is difficult to debug individual elements. The released ver-
sion is as free of bugs as is possible, but bugs will still be present. In order to aid in any debugging pro-
cess there are a number of debug levels (for want of a better word) available. When enabled these
"levels' will print out data to stdout which can be checked to see if the software is performing as expec-
ted.

These debug levels are activated via this GUI and use shared memory. To use them in your code the fol-
lowing template should be used:

if ( ( *debug_ level & GATE ) == GATE )

(void *) printf("gateld : In 1D gating routine called with\n"
" . data = %\n", data
)

}

Where the user would substitute "GATE" for one of the other defined variables. These different vari-
ables are discussed later in this section. However as far as the end user is concerned there are four debug
toggles available: USER1 USER2 USER3 and USER4.

For ease, the figure below shows the names and functions of the different widgets that compose the De-
bug Levels Frame.

Figure7. A synopsisof the widgetsthat compose the Debug L evels Frame.




A Maintainers Guide to MIDA Ssort

WDET MEBUD
(D A WL GEs
' fd HLE : *hgtd QCMMAND : setcBbuglenelineldincd udduemtist) $v
: - Topgles INCIDINCZD UCIYUGMHIST
INCID-> All subrontires imvolving IDspeda
INCZD-> All subroutines imvohing 2Dspedtra.
HIE :debptd
WDET DAL TAM Al sbratines irmvdving gainmetching
COMMAND : se!d]ld&/ HIST ->All subroutines invdved with histograning,

HLE s cehptd COMMAND :si(ﬂllgevd(merﬂ 1 prog ceciphes,
WOET (RO et Hock, parse arps ain shered geie) $v
CCVMAND - sehrerdd $v PUREOE  : Topgles SPECTRAENDDEIFFER/(GET
PURECFE  : Stsell USSR e tepelesto PARSEMAINSHAREDGATE

SECTRA <~ Jedrumaeaicnrotines
FILE - dhpd gl )]am. am. sl et Do l] e l] At D =The “end” witine
WIOET  MEBUXL | | DECIPHER - The decipher detaroutires
AONMAND - NA TE‘:Z“‘I" Gl GET =The routines thet read data Hocks
PURECSE : Mesepe fidd PARE - >Theagmed prsrg i
Serz3duglncs | MAN  -sat mEnmutine
! SHARED > Staredmermory tesed routines
HLE dhptd GE > CHirgraties
WDET @A
COVMVAND : setlibd$v
PURFOE  : Stsdl LIBRARY dia togglesto 1
HLE s debaptd
HLE : denptd WDET  :EDCR)
WDET MEBUEB COVMAND : e dibg levels
COMMAND :NA PURRCEE  : Svestheqmert cebuglevels

HLE ebeitd

WDET B

COMMAND : setrreind $v

PRPOE  : SsdlMAINdhgteeglestol

These widgets are listed below:

MDEBUGO: A message widget.

CBDOALL: A check-box widget. If toggled thiswill set all of the available debugging options on.
MDEBUGO1: A message widget.

CBDOUO: A check-box widget. If ticked this will set all user debug togglesto on.

CBDOU1(2,3,4): Four check-box widgets that are used to toggle USER1 - USER4 respectively.
MDEBUGO2: A message widget.

CBDOLO: A check-box widget. If ticked all of the Library debug levels are set.

CBDOL1(2,3,4,5): Five check-box widgets that are used to toggle INC1D (all subroutines involving
1D spectra), INC2D (al subroutines involving 2D spectra), CONV1D, UGM (&l subroutines in-
volving gainmatching)and HIST (all subroutines involving histograming).

« MDEBUGOS: A message widget.

« CBDOMO: A check-box widget. If ticked al of the MAIN debug levels are set.

e« CBDOM1(2,3,4,5,6,7): Seven check-box widgets that are used to toggle SPECTRA (spectrum cre-
ation routines), END (the End routine), DECIPHER (the decipher_data routines), GET (the routines
that read the data), PARSE (the argument parsing routine), MAIN (the sort_main routine), SHARED
(shared memory routines) and GATE (gating routines).

The View Data Frame.

Thisframeis used to allow the user to look at the raw data before it has been unravelled by the event de-
coder routine. In order to obtain the data the user provides two variables: the first determines the range
of data to be viewed, the second the format to look at the data (8/16/32bit words). This information is
then passed to the program midasSortfb as arguments, which returns the current position in the data
block and a stream of data to be painted to the screen. The data word at the current position in the block
is highlighted in red.




A Maintainers Guide to MIDA Ssort

For ease, the figure below shows the names and functions of the different widgets that compose the
View Data Frame.

Figure8. A synopsisof thewidgetsthat compose the View Data Frame.

HLE ~iew datatcl
WIDGET  :MVDL
COMMAND :NA
PURPOSE  : Message field

HILE view ditatcl
WIDGET  : GVDL
T COMMAND ‘Nene

PURPOSE - Display formmtted rvw bt

w detatcl
wnxrr va
COMMAND : viewDutac

/ PURPOSE D(snwﬂu fmx

_.L:-'; e v | (R f“‘

TILE +view datatel /
WIDGET  :CSVDZ

COMMAND :sef vehspos $v; viewDalared

PURRORE.  Dovers ot o 416325 v

Wﬂ)Gl:T BV
COMMAND : viewDataredisplay
PURPOSE ~ : Refiesh

view datatel

These widgets are listed below:

MVD1: A message widget, used to display the current position in the block. Note that this is the ac-
tual position asit is assumed that al data words are 16bit prior to decodeing.

GVD1: A Galley widget that is used to display the raw data. The user can not modify anything in
this widget.

BVD1: A button widget used to destroy this frame.

CSVD1: A choice-stack widget used to determine the range over wich the data should be displayed.
This range is with respect to the current position. If the choice goes out of bounds the bounds are
altered automatically.

CSVD2: A choice-stack widget that is used to specify the number of bits per word.

BVD2: A button widget, used to force aredisplay of this window. Thiswindow is also redisplayed if
either CSVD1 or CSVD2 are altered.

The User Variables Frame.

Occasionaly the user may want to have the ability to change some variables as the program is running.
While thisis not recomended, this option has been incorperated into MIDA Ssort. These variables can be
set/modified by means of the "User Variables' frame. Four different types of variable can be used, int,
unsigned int, short int and float. The variables are written to shared memory either before the sort starts
or as the sort progresses. These variables are only written to shared memory when the "Write to Shared
Memory" button is pressed - thus the numbers that are displayed may not reflect the actual variables.

For ease, the figure below shows the names and functions of the different widgets that compose the User
Variables Frame.

Figure9. A synopsisof thewidgetsthat compose the User Variables Frame.

10



A Maintainers Guide to MIDA Ssort

FILE s user_var.tcl FILE s user_var.tcl FILE s user_var.tcl
WIDGET :MUV1 WIDGET :TUV2 WIDGET :TUV3
FILE - user vartcl COMMAND :N/A COMMAND  : set uv2 $v COMMAND  : set uv3 $v
WIDGET CMUV2 PURPOSE : Message field PURPOSE : Sets a user variable PURPOSE : Sets a user variable
COMMAND :NA
PURPOSE : Message field FILE s user_var.tel
WIDGET 1 TUV6 FILE s user_var.tcl
FILE - user vartcl COMMAND  :setuvé $v WIDGET :TUV4
WIDGET S TUV1 PURPOSE : Sets a user variable COMMAND  : setuvd $v
COMMAND  : setuvl $v PURPOSE : Sets a user variable
PURPOSE : Sets a user variable
FILE : user_var.tcl
FILE - user vartcl DAS S0 x WIDGET : TUV7
WIDGET :MUV3 COMMAND : set uv7 $v
GUT to control hles .
COMMAND  :N/A SRS PURPOSE  : Sets a user variable
PURPOSE : Message field
Van‘abrlas 1-4 are of! \ tegs FILE user vartcl
FILE s user_vartcl b0 a0 Wl U4 o WIDGET 1 TUVS
WIDCET - TUVS Wariables 5- § are oftype unJed imeger COMMAND set uvg §v ]
COMMAND ~ : set uv5 $v 1vs [ A [ uv? o 30 PURPOSE  : Sets auser variable
PURPOSE : Sets a user variable Variables 9- 12 are of type short
uvs o uviofo w11 fo uvi2[o FILE - user_vartcl
FILE s user_var.tcl Varlables 13 - 16 are nftypeﬂnal g‘gﬁT : IU[ v 1122 5
WIDGET :MUV4 g e [ AND  :setuvl2 $v
COMMAND - N/A uv. UVi4{0.0 U¥1S|0 UVis |00 PURPOSE Sets a-user variable
PURPOSE : Message field
Wrife to shared memory
FILE s user vartcl FILE user_var el
WIDGET TUVS - WIDGET - Tuvie
COMMAND - set uv9 $v COMMAND  :setuvl6 $v
PURPOSE - Sets a user variable FILE : user_vartcl PURPOSE Sets a user variable
WIDGET :TUVI1
FILE - user var.tcl COMMAND  :setuvll $v
FILE s user var.tcl WIDGET - MUVS PURPOSE : Sets auser variable FILE : user_var.tcl
WIDGET s TUvL3 COMMAND :N/A WIDGET @ TUV1S
PURPOSE - Sa8 a er vl PURPOSE - Message fild COMMAND : sat w15 Sv
’ PURPOSE  : Sets a user variable
FILE s user_var.tel
WIDGET :BUV1 ) FILE - user_vartcl FILE : user_var.tcl
COMMAND  : user_verwrile WIDGET S TUV14 WIDGET . TUV10
PURPOSE : Write values to shared memory COMMAND  : set uvld $v COMMAND  :setuvl0 $v
PURPOSE : Sets a user variable PURPOSE : Sets a user variable

These widgets are listed below:

« MUV1(2,3,4,5): Message widgets.
 TUV1(2,3,4): Text widgets that are used to input/display the integer variables.
»  TUV5(6,7,8): Text widgets that are used to input/display the unsigned integer variables.
* TUV9(10,11,12): Text widgets that are used to input/display the short integer variables.
» TUV13(14,15,16): Text widgets that are used to input/display the float variables.
*  BUV1: A button widget that is used to initiate the writing of these variables to shared memory.

The Tape File Info Frame.

If the data to be sorted is contained on tape the user needs, at a minimum to specify the number of tapes
that are to be read. In addition if the tapes in question are ANSI format then information about the file-
name is required. MIDASsort assumes that the filenames are different, so tapes are identified via a num-
ber. Once all of the required data has been input it is saved to the filet ape. i nf o in the tmp directory
associated with current MIDAS session.

For ease, the figure below shows the names and functions of the different widgets that compose the Tape
File Info Frame.

Figure 10. A synopsis of the widgetsthat composethe Tape File Info Frame.

11



A Maintainers Guide to MIDA Ssort

FILE : tape_info.tcl
WIDGET : MIMEDIAT
COMMAND  :NA

PURPOSE : Message

FILE : tape_info.tcl

‘WIDGET : MIMEDIA

FILE : tape_info.td COMMAND  : NA

WIDGET : NIMEDIATAPES PURPOSE : Message

COMMAND  : set numitapes $v

PURPOSE : The user can set the mumber of
Tape Volumes thet are to be
read by the program.

‘M IDASsort: Tape file nfo
MIDASsort: Tape file info

Number of Tapes 10 Scsm]]

Use the form belosw to decide which runfiles to IGNORE

FILE : tape_info.tcl

WIDGET - NMEDIAVAL

COMMAND  : setimedianum $v

PURPOSE : The user specifies the tape mumber

Tape Number I [
File Name |
FLE < tape_info.tcl FLE : tape_info.tcl
WIDGET - IMEDIALIST A_dd] WIDGET : TIMEDIANAME

COMMAND  : choice_imedia $i
PURPOSE : Allows the user to see what they

COMMAND  : set simedianame $v
PURPOSE : The user specifies the file
(run) muber:

Rmnvn
have entered and to choose
values to be removed.
3 | FILE : tape info.tcl
2 WIDGET : BIMEDIAREMOVE
COMMAND  : remove-imedia
PURPOSE : Removes tape info from our list

FILE : tape info.tcl
WIDGET : BIMEDIAADD
COMMAND  : add-imedia
PURPOSE : Add tape info to list

FILE - tape info.tdl
‘WIDGET - BIMEDIACK.
COMMAND  : ok-imediia

PURPOSE + White tape info to disk file

These widgets are listed below:

MIMEDIAT: A message widget.

NIMEDIATAPES: A number widget, used to specify the total number of tapes to be read.
MIMEDIA: A message widget.

IMEDIALIST: A list widget used to display tape information. Individual items can be selected from
thislist.

« NMEDIAVAL: A number widget used to specify the tape number to be assigned to the current file
name.

TIMEDIANAME: A text widget used to specify the name (6 chars) of afileto be read.
BIMEDIAADD: A button widget, used to add tape info to the list.

BIMEDIAREMOVE: A button widget used to delete the selected tape file from the list.
BIMEDIAOK: A button widget that writes the data to disk and exits this frame.

The Disk File Info Frame.

If the data to be sorted reside on a disk, then that information needs to be provided to the sort program.
Thisis achieved through the "Disk Info" frame.

There are three options for specifying the names of files to be read:

i.  Multiplefileswith namesin the format namet.extension, where "#" represents a number.
ii. Multiplefiles with namesin the format name.extension#, , where "#" represents a number.
iii. Individual files.

In the first two cases the individual text can be specified, as can the start and stop numbers, the tcl frame
will then generate the complete list of filenames. In the latter case names must be specified individually.

In addition the user must specify the block size, in bytes, of the disk file to be read. This will ensure that
all of the datais sorted, in the majority of cases thiswill be 16384.

For ease, the figure below shows the names and functions of the different widgets that compose the Disk
File Info Frame.

12



A Maintainers Guide to MIDA Ssort

Figure 11. A synopsisof thewidgetsthat composethe Disk File Info Frame.

FILE : dhisetel
WIDGET  :MDISK
COMMAND :INA
PURPOSE  :Message

FILE  disctel

WIDGET ~ :IDISK

COMMAND  : select-itern $i

PURPOSE  : Display informetion on disk files containing
datato be read Also allows selection of these
files for deletion/modification.

EAMiDASsort: L. Info;

DISKInfo:  Use this frame generat= tae file containing infornation about the Jhiput discfiles to scan -
- - : FILE : disc.tel

WIDGET :NDISK1

FLE : discitel T || covanD :ndigasy
WIDGET :NDISK PURPOSE  : The stop number for the files.
COMMAND  : ndisk $v /
PURPGSE  :The start number for the disk files.
This is only used for the name# and name#ext
options, as these names are automatically generated. / FILE : disc.tel

WIDGET : CSDISK1
COMMAND : set bfint$v

FILE - disctcl N / PURPOSE  : Set the blocksize, in bytes, of the file to read
WIDGET - CSDISK
COMMAND : cedisk $i "
) . . FILE : disc.tel
PURPCSE  : Choose the naming format for the disk files / WIDCET . TDISK1

Toberead / COMMAND : set atext Sv
ip PURPOSE  : St the text to be appended after the number
N / /
/

FLE : disc.tel / FILE + disc.tel

WIDGET  :TDISK

COMMAND : set diext $v Neme Format 0] custor | Senarfo W spasft Wl Biocksze 2768

PURPOSE  : Set the text to be used before the number. S
aald Bl Appendresnfd] B Browse

Or the text to be used, is dependent

WIDGET : BDISK6
COMMAND : browse_dlisk_files

PURPOSE  : Usea GUI to pick the files to read

upon the filename format.
sg | Reighy | Femwe | Ol | QurdSae |  Cacd | FILE . disetcl
WIDGET : BDISKS
COMMAND  : destroy-frame FDISK
PURPOSE  : Destroy the frame.
. FILE sdisc.tcl

FILE : disc.tel

WIDGET : BDISKO WIDGET .BDI$4 )

COMMAND : add-list FILE . discicl COMMAND  : save-disklist

PURPOSE  : Add afilename to the list. . o PURPOSE  : Save the files displayed to disk

) IDCET : BOISKS and destroy the frame

COMMAND : clear-disklist

" PURPOSE  :Remove all the files from the list.
FILE : disc.tel

WIDGET ~ :BDISKL )

COMMAND : paint-disklist FILE : disctel

DURPOSE  :Refreshthe LISTpane ~ VADCET  :BDISK2
COMMAND  : remove-list

PURPOSE  : Remove the selected file from the list.

These widgets are listed below:

MDISK: A message widget.

LDISK: A list widget used to display the information relating to the disk files to be read. If the file
di sc. i nf o is present then the contents of this file are added to the list. It is possible to select the
different disk filesin this widget.

CSDISK: A choice-stack widget used to specify which of the filename formats is being used to spe-
cify thefiles to be read (see above).

NDISK: A number widget used to specify the start number for files using formatsi or ii. The value
in this widget is not used for the "custom™ format.

NDISK1: A number widget used to specify the stop number for files using formatsi or ii. The value
in thiswidget is not used for the "custom” format.

CSDISK1: A choice-stack widget, used to specify the size of the blocks to read. The block size is
measured in bytes.

TDISK: A text widget that is used to specify the first part of the filename (formatsi and ii) or the en-
tire filename (format iii). The user can either type the filename directly into this widget, or can use
the "Browse" button to pick the file graphically. If this latter option is chosen, and formats i and ii
are specified the user will need to edit this text before "adding” to the list.

TDISK1: A text widget that is used to specify the text to be appended to the filename. Thiswidget is
only enabled for formatsi and ii.

BDISK®6: A button widget that is used to start a graphical browser to pick filenames.

BDISKO: A button widget, used to add files to the list. If formatsi and ii are specified then the files
between start and stop will be created.

BDISK1: A button widget, used to redisplay the list.

BDISK2: A button widget that is used to remove the currently selected filname from the list.

13



A Maintainers Guide to MIDA Ssort

BDISK3: A button widget, used to clear all files from thelist.

BDISK4: A button widget used to save the data to the disk file di sc. i nf o in the current tmp dir-
ectory. Once this has been competed the frame is destroyed.

BDISK5: A button widget, used to destroy the frame without saving any changesto file.

Control Programs

Although much of the program control is handled within the Tcl code several "C" programs have been
written that are started by the GUI. The source code for these programs reside in the M DASsor t /
Utilities directory.

The programs currently used by MIDASsort are:

conpi | e_mi das_sort: This program is used to parse the sort file, generate the Makefile
make. m das_sort and run the make routine.

filestatus_m das_sort: This program is used to check if the sortfile is compiled, if the
source is newer than the executable and if the configuration files are present in the tmp directory.
The argument passed to the program is the name (and path) of the source file. The output from the
program is specified as:

e 0: No executablefileis present.

» 1: The program is compiled.

* 2: The executableis older than the source.

* 3: Thereisan executablefile, but no configuration files are present in the tmp directory.

m dasSor t f b: This program is used while the sort isin progress to extract the current position in
the data block and the raw data. This information is stored in shared memory. The arguments that
are passed to the program are range (how much data isto be displayed), wrdbits (display the datais
8/16/32 bit words), action ((r)ead/(w)rite/(d)elete). There are two outputs from the program: the
first is the current position in the block (written to the file nsdat a. t xt ) and a stream of data to
stdout (captured by thetcl).

m dasSor t shm This program is the principle method of accessing the shared memory compon-
ents used by the sort program. The arguments to this program are action((r)ead/(w)rite/(d)elete),
variableid (1-21) and value. The numbers associations are:

: action - pause/restart/kill the sort.
: debuglevel - what debug options are set.
: toggle_hist - enable histograming.
:user variableint

: user variable int

: user variable int

:user variableint

: user variable unsigned int

: user variable unsigned int

10. : user variable unsigned int

11. : user variable unsigned int

12. : user variable short int

13. : user variable short int

14. : user variable short int

15. : user variable short int

16. : user variable float

17. : user variable float

18. : user variable float

19. : user variable float

CoNoA~AWNE

r et ur n_exe: program that returns the name of the executable file. The argument is the source
file.

14



A Maintainers Guide to MIDA Ssort

vi. tapestatus_nidas_sort: program that interogates the named tape drive, returning a string
relating to its status:

Exabyte 8500: Ready - An exabyte tape drive is ready for use.
DLT: Ready - A DLT tapedriveisready for use.

DLT1: Ready - A DLT1 tapedrive isready for use.

Tape Ready - An unknown tape drive isready for use.

No such device - the chosen deviceis not connected/powered up.
No Tape Loaded.

Permission denied - you do not have permission to acces this drive.
Device busy - The device isin use/performing an operation.
Device error.

vii. ts_status_ni das_sort: This program checks for the presence of a shared memory segment
with the id of the MIDAS TapeServer shared memory. Note the program does not test that the
TapeServer isrunning! Thereis no argument. The output from this program is:

* No Connection : The shared memory does not exist.
* Good Connection : The shared memory exists.

Sort Package Libraries.

The programs that make up the sort package library are split into two: those relating directly to the sort
(found in $( M DASBASE) / M DASsor t/ Sorti ng) and those relating to the rest of the package
(found in $( M DASBASE) / M DASsor t / Li bs)

Sort-main

The"main" routine is defined in thefilesor t - mai n. c. From this routine everything elseis called, the
order in which thisis done is displayed in the next session.

Once the main routine has been entered the first action is to setup the signal handlers, followed by spe-
cifying that the routine "end_prog" should be called whenever the program exits. This is important as if
an error forces the premature end of the sort the value "debug_status' is printed out. This variable
changes as the program steps through in order to make it easier to determine the point at which the bug
isfound.

It should be noted, that as soon as the debug status has been changed via the GUI it takes imeadiate ef-
fect within the program.

Although the control of the program is handled via shared memory the state of the "action" variable is

only checked at the end of each data block. So users should not be concerned if the program continues to
run after it has been told to pause or stop.

Program flow

The figure below shows how the different routines relate to each other, and the interation between dif-
ferent routines.

Figure 12. Program flow datagram.

15



A Maintainers Guide to MIDA Ssort

Process Flow for MIDASSor - sort prodgram

Setup signal Initialise
L Start IZ'I} handlers 'Zt} variahles

I

Create Parse cimd Setup Shared
Spectra {1’:' line arns {:’:I memaony

l

Load dynamic :: Users init :: Enter process
libraries routine loop

I

Get new block

]

Mo Mo
Exact Event | <y [ < .

| -

UIsers sortin :: Histogram -
routine Data Users final
routine

L End | Cleanup
variables

Routines to read the data

This section deals with the routines that read blocks of data into the program. At present three different
routines are provided:

1. tape - Thisroutine reads blocks of datafrom tape.

16



A Maintainers Guide to MIDA Ssort

2. di sc - Thisroutine reads blocks of datafrom disk.
3.  m dasTS - Thisroutine reads data from the shared memory alocated by the MIDAS TapeServer.

These routines are written as modules that are loaded dynamically at runtime. The reason for thisis to
allow the same sort program to access data from different sources without recompiling the program
(assuming the same session).

As plugin modules they al have the same format and definition. The routine definition is:
short *get bl ock( short **num int **new, int *runinfo );
The return value is a pointer to a short that contains upto 65536 elements. The value "new" is a variable
to determine if anew fileisto beread. The value "runinfo" is now depreciated.
If you, or a user, wants to follow the process by which these routines extract the data the debug toggle

"GET" should be set to on. If additional information is required to be printed out the following formal-
ism should be used.

if ( ( *debug_level & GET ) == GET )
printf( "get_block : About to open \"disc.info\" ...\n" );

tap €.S0o
As the name implies, this routine reads data from tape. The value "num" refers to the current tape num-
ber. Details about the files to be read from tape are obtained from the filet ape. i nf o which is stored
in the tmp directory that is allocated to the current MIDAS session.

The return value from the "C" library function "read" (the number of bytes read) is used to determine the
action. The segment of code that deals with this return value is shown below:

switch ( bsize)

case -1:

printf( "tape : Error, % returned %\n", tdev, bsize );
exit ( 0);

br eak;

case O:

if ( at_eof )
at_eov = 1;

at _eof = 1;

nm.nt_op = MIFSF;

nm.nt _count = 1;

ioctl( fd, MIIOCTOP, &m);
br eak;

case 80:

if ( at_eof )

while ( numtapes-- )
if ( ansi_fnt )

tnum = (short int)(runinfo[ ctr++ 1);

17



A Maintainers Guide to MIDA Ssort

if ( ( *debug_level & GET ) == CGET )
printf( "tape : tnum= %\n", tnum);

prun = &uninfo[ ctr++ ];

mencpy( run, prun, sizeof( run) );

if ( ( *debug_ level & GET ) == GET )

printf( "tape : Run = %\n", run );

ctr++;
}
}

at _eof = 0;
br eak;
defaul t:
at_eov = 0;
at_eof = 0;

*new = (int *)tctr;
*num = bl ock;
return bl ock;

br eak;

As can be seen, it is assumed that all return values greater than 80 bytes refer to data. Obviously thisis
not completely true. For example some formats use upto 256 bytes as message blocks on tape. This
should be born in mind when data decoders are being written.

disc.so

As expected this module reads data from a/multiple disk file(s). The information about the files to be
read are stored in di sc. i nf o in the tmp directory of the current MIDAS session. Unlike the case of
tapes, the data blocks in disk files can be accessed at any size the user tells the program. This can lead to
the loss of data, so the information that isstored indi sc. i nf o must be acurate.

This routine also checks that the file that is to be accessed has a sensible size. If the file sizeis 0 then it
will ignore that file.

midasTS.so

This module will read data from the shared memory alocated by the MIDAS TapeServer. It ascertains
the relative age of the data so that if you are waiting for data to come into the TapeServer the same block
of datawill not be sorted over and over again. There could exist a case where you only sort a fraction of
the data being sent to the TapeServer - this will only occur if the overheads for the sort are greater than
the spead at which datais being passed to the TapeServer.

Routines to decipher the data

As with the routines that read the data the files described here are plugin modules. This being the case
they al have the same definition:

short deci pher _data( unsigned short *raw data, unsigned int *id,
unsi gned int *adc, unsigned int *numwds )

raw_data is a pointer to the memory containing the data block. id is a pointer to an array containing the
detector id data words. adc is a pointer to the array containing all of the data associated with each detect-

18



A Maintainers Guide to MIDA Ssort

or id. nwrdsis unused. The return value is the event multiplicity or equivalent.

Debug statements within this module type are defined using the following formalism.

if ( ( *debug_level & DECIPHER ) == DECI PHER )
{

printf(
printf( "
printf(

printf( "

}

"deci pher_data : OQther data wd\n" );

id =%\n", id [ 0] );
Module no = %\n", adc [ 0] );
Info Code = %\n", adc [ 1] );

The following data formats are currently supported:

e Eurogam
* Exogam
* GREAT

Routines used during the sort

These routines can al be found in the Lib directory.

create_shared_memory

create_spectra

end_prog

histogram_data

parse_args

plugin_loader

prog_pid

read cfg_file

read debug_file

read specarray

This routine creates the shared memory segments for the program. In
order to alow more that one user at a time, the key comprises the tcl
tmp directory that is created by the MIDAS-session and the letter 'a.

This routine creates the named spectra via the memsas daemon. If the
"overwrite" flag is set to 1 then any spectra that exist with the same
names are del eted before being created.

This routine will always be called when the program exits - even if
there is an error condition. The routine ensures that we tidy up and
print out any information that may be helpful to understand why the
program crashed - if it did.

This routine will, if invoked, generate histogram spectra of the data
being analysed.

This routine handles the arguments that are passed to the program at
the begining. It creates any control files that need to be and sets all of
the appropriate flags.

This is the routine that loads our shared libraries. the event decoder
and the get_event routine. If any more shared libraries need to be
loded than this routine should be modified.

This routine returns the process id for the program as it runs. This PID
is required when the program is being controlled by signals
(depreciated).

In order to histogram the data a configuration file, identical to that
used by Exogam is required. Thisroutine readsin such afile.

This routine reads the debug file allowing the correct debug level to be
set. The debug file is a text file containing a list of all of the possible
debug options and atoggle flag (0/1).

The spectra that are to be created are extracted from the sort file and
written to a seperate file. Thisfile is then read when the sort is started.
This file contains the filename, fileid, length and spectrum type for all

19



A Maintainers Guide to MIDA Ssort

sort-signals

sort_got_sig
swap

of the spectrathat we are intersted in creating.

This routine sets up the signal handlers for the sort, ensuring that all
errors are caught.

This routine has now been depriciated.

This file contains two routines that can be used to byteswap 16 bit and
32 bit words

Routines Available to the user

These routines can all be found in the Sorting directory.

gainmatch

gateld

gate2d

incld

inc2d
incvld
incva2d

read2d

setld
set2d
valld

val2d

The prototype for this routine is: int gainmatch ( float a, float b, float
¢, intval ). i.e. if you provide the variables a, b, cand avalue - val - to
be modified the returned value will be related to the input val by: re-
turn=a+(b*va )+ (c*va * va).

This routine returns 0/1 id a data value (data) lies in a list of limits
(limits). The routine has the prototype: int gateld( int *limits, int
data). *limitsis a 1D array consisting of 2n + 2 elements, where n is
the number of lo-hi pairs, the routine Inows that the list is complete
when it encouters two sequential zeros..

Uses the routine pnpoly to determine if a vertex lies within a polygon.
The prototype is int gate2d( int *limits, int X, inty ). Herex and y are
the coordinates of the point to be tested, the array limits consists of 2n
+ 2 elements. Each element is (x,y) for the verticies of the polygon.
The list should be terminated by two zeros.

void incld( int id, int val). This routine will increment chanel "val" in
spectrum "id" by 1. The routine checks that the spectrum id and the
channel are both valid.

void inc2d( int id, int xval, int yval). This routine is the same as incld
but for a2D spectrum.

void incvld( int id, int chan, int val ) - increment channel "chan" in
spectrum "id" by "va" counts.

void incv2d( int id, int xchan, int ychan, int val) - asincvld but for a
2D spectrum.

int *read2d( char *fname, int set ) - Read in a data file containing a
sequence of polygon vertices. The input file format is the same as that
output by MIDAS. The datafile is specified via the string "fname". If
the file contains more than one polygon array, the value "set" specifies

which oneto use. Thereturn isan integer array.

void setld(intid, int chan, int val ) - This routine will set the countsin
channel "chan" of spectrum "id" to "val".

void set2d( int id, int xchan, int ychan, int val ) - Asfor setld but for a
2D spectrum.

int val1d( int id, int chan ) - Returns the number of counts in channel
"chan" of spectrum "id".

int val2d( int id, int xchan, int ychan ) - As for valld, but for a 2D
spectrum.

20



A Maintainers Guide to MIDA Ssort

Writing Sort Programs

Irrespective of the language that the sort program is written in (C or Fortran) it must have the following

basic structure:
*trigger
128
*oned
1 mult 4096
2 adc 4096
4 val 16384
5 val 16384
*t wod
3 tproj 4096 4096
*vars
*sort
int sortin( void)
}

Some of these "starwords' arise from a historic context and are currently not implemented: e.g.
"*trigger" and "*vars'. The "*oned" and "*twod" words are used to deliniate the definitions of 1D and
2D spectra. The "*sort" word is used to define the start of the users sort routine. Prior to "*sort" the file
can be commented using the "#", after "*sort" comments must be written asif you were writing a"C" or
"Fortran" program.

The user can specify routines caled init and finish which are called at the start and end of the sort re-
spectivly. If these two routines are not specified they are automatically added at compile time.

In addition any other routines that the user may wish to call can be specified in thisfile.

In general the best way to see how to use the different functions is to look at the example sort files.
These can be found in the Examples directory.

In the following sections a detailed description of how to write sort programs in both "C" and "Fortran™
is presented.

Global Variables

In order to make the data that has been read from Tape/Disk/Memory available to the users sort routine
three "global" variables have been implemented. The method by which these are accessed is determined
by the programming language that you are using. These variables are:

gid Thisisan integer array containing alist of the ADC id's. Note that this
is often the "raw" id and would need further decompisition to obtain
numbers that the user would be more familier with.

gdata Thisisaninteger array containing all of the data words that are associ-
ated with a particular detector id. A maximum of 1024 wrds per id is
alowed.

mult Thisisthe number of gid - gdataword pairs.

Using "C"

A sample sort file written in "C" is shown below:

21



A Maintainers Guide to MIDA Ssort

#--> s s ————————
#--> Sanple sort program witten to extract pulse data
#--> fromthe data taken in Koln for the GRT test !
#--> S S S S S . T, . - T, T, . - T, . . . . T . . T S S S S S S S S S S S
*trigger
#--> s s s s s sy ————
#--> this *word is not currently inplenented
#--> s s s s —————————————————
128
*oned
#--> ooy ——————————————————————
#--> Here we shall define our 1D spectra
#-->
#--> This can be achived in a couple of different ways
#-->
#--> id name |len - Make sure the ID s are unique
#-->
#--> >> A list of spectra called grpnaneidstart
#--> idstart...idstop grpname |en
#-->
#--> s s ————————————————
1 mult 4096
2 adc 4096
4 val 16384
5 val 16384
*t wod
#--> s ——————————
#--> 2D spectra are defined in the sane way, using the
#--> *twod word. You can specify the size of the x and
#--> the y axis.
#--> s s s s s s g sy —j————————
3 tproj 4096 4096
*vars
#--> s ————————————————
#--> This *word has been depreci ated
#--> s s sy p————————
*sort
//--> s p———————————————
[/-->So this is where the sort is defined, note the
;;——> change in our conments .....

-->
;;——> -- First include any header files that are reqd

-=> oo
#i ncl ude <stdio. h>
#i nclude <stdlib. h>
//--> s e e e ————————————————
/l--> So we can define the init routine, all we shal
/[l-->do is to print out an inane comment to let us
[[--> know where we are!
//--> s p———————————————
int init(void)

printf( "In user init ...\n" );

return O;

}
//--> s e g ——————————————————
//--> Now define the sortin routine. Renenber this is a
[l-->must, if it is not included your sort will not
[]--> work!
//--> s s s p———————
int sortin(void)
{




A Maintainers Guide to MIDA Ssort

/l--> Define some variables for use within this <--/1
[/-->routine. - Only declare what you need!! <--//
/] --> ===========—=—=—=—=—=—=—=—=——=—=—=—=—=—=—=——=—=—=——=—=—=—=—=—=—=—=—=—=—=—===—=== <--//
FILE *f;

int t = 0;

int i, j;

static int ctr = 0,

char fnanme[ 128 ];

] --> ==============—===—=—==—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—==—=—====== <--//
[l--> Lets increnent a 1D spectrumw th our event nmult <--//
/] --> ===============—=====—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—====== <--//
if (milt >0 & mult < 4096 )

incld( 1, mult );

/] --> ===========—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—=—========= <--//
/l--> Lets increnent a 1D spectrumwith the id's of the <--//
/1--> ADC s extracted fromthe event. <--//
/] --> ==============—===—=—==—=—==—=—=—=—=—=—==—=—==—=—=============== <--//
for (i =0; i <mult; i++)

if (gid i ] >>0&&gid i ] < 4096 )
incld( 2, gidl i ] );

}
if ( *nwds >0 && *nwds < 16384 )
incld( 5, *nwds );

for (j =0; j <mult; j++)
for (i =5; i <500; i++)

(j * 1024 ) ] -7800 > 0 &&
j * 1024 ) ] -7800 < 4096 )

if ( gdata] i +
gdatal i + (

/] -- ——=—=—=—=—==—=—==—=—=—=—=—=—=—=—=—==—=—=—==—===—===—============== <--//

/1--> Now increment a 2D spectrum. .. <--//
/] --> =================—=—==—=—==—=—=—==—=—==—=—==—=—=========== <--//
inc2d( 3, i, gdata[ i + ( j * 1024 ) ] -7800 );
}
if ( ( ( gdata] i + ( j * 1024 ) ] - 7800 ) > 1000 ) &&
( ( gdata] 10 + ( j * 1024 ) ] - 7800 ) < 100 ) )
{
t = 1;
}
)
if (t)
{
sprintf( fname, "/hone/deal/pul se%.txt", ctr++ );
f = fopen( fnane, "W );
for (i =5; i <500; i++)
{
fprintf( f, "% %\n", i, gdata] i + ( j * 1024 ) ] );
}

fclose( f );
if (ctr > 10)
exit( 0);

23



A Maintainers Guide to MIDA Ssort

{
// D >t
/1--> Just print sonmething out to | et us know
// P> Jfs s
printf(" Time to gooooooooooo\n" );
return O;

Using "Fortran”
ToDo List

Vi.

Complete this manual.

Find a permanent maintainer for this package.
Increase the list of decipher routines.

Increase the list of user libraries.

Add support for writing data back out.

Check migration to windows.

24



