
A Maintainers Guide to MIDASsort
Duncan Appelbe, CCLRC Daresbury Laboratory

Copyright © 2003 CCLRC Daresbury Laboratory, Nuclear Physics Group

Table of Contents
Introduction ... 1
The GUI .. 2

The Sort Control Frame. ... 3
The Sort Settings Frame ... 5
The MEMSAS Control Frame. .. 6
The Sort Options Frame. ... 7
The Debug Levels Frame. ... 8
The View Data Frame. ... 9
The User Variables Frame. .. 10
The Tape File Info Frame. .. 11
The Disk File Info Frame. ... 12

Control Programs .. 14
Sort Package Libraries. .. 15

Sort-main .. 15
Program flow ... 15
Routines to read the data ... 16
Routines to decipher the data ... 18
Routines used during the sort ... 19
Routines Available to the user ... 20

Writing Sort Programs ... 21
Global Variables ... 21
Using "C" .. 21
Using "Fortran" .. 24

ToDo List .. 24

Revision History
Revision 0.01 Wed Jan 28 09:26:50 2004 dea
Changed the original layout to one slightly more logical.

Introduction
MIDASsort is intended to be a multifuction data sorting package for the MIDAS data Analysis/Ac-
quisition suite that is available by http/ftp from the Daresbury Nuclear Physics Group. MIDASsort has
been written to replace SunSort and CSort, both of which are based upon the OpenLook graphics pack-
age that is no longer supported by SUN. This package should not be confused with MTSort that is sup-
ported by Liverpool Nuclear Physics Group.

The GUI for MIDASsort has been written using the MIDAS Tcl libraries, and makes use of the MIDAS
package for its control and to display different histograms.

This document has been written in xml and processed using FOP and the DocBook DTD. The source for
this file and some of the associated scripts can be found in the documentation directory of the MI-
DASsort development tree.

The individual elements of MIDASsort can be found in the directory $(MIDASBASE)/MIDASsort.

1

In order to use MIDASsort under Microsoft Windows you MUST have installed cygwin and the gcc
compilers. The system path should be modified to include the C:\cygwin\bin directory.

The GUI
MIDASsort is controled through a GUI, this GUI is launched from the MIDAS base frame using the but-
ton "Sort Tool". Once initiated the software sets up the local sas resource that is required to view spec-
tra, then starts the "Sort Control Frame", see below.

Figure 1. The Sort Control Frame

Once this GUI has been launched it can be used to control all aspects of the sorting mechanism. The re-
lationship between the different frames are shown below:

Figure 2. The relationship bewteen the Sort Control Frame and its daughters

A Maintainers Guide to MIDASsort

2

The tcl that is used to define the GUI Frames and the associated actions is split between numerous files.
In the main the name of these files relates to the functions that it contains. The main frame is setup from
the file midassort.tcl while all of the event handlers are defined and associated within the file
click.tcl, while all of the widget "help" information is contained within the file midassort.txt.

In the following sections, details about the different GUI frames are discussed. When widgets are spe-
cified, they are the widgets defined by the MIDAS tcl library.

The Sort Control Frame.
For ease, the figure below shows the names and functions of the different widgets that compose the Sort
Control Frame.

Figure 3. A synopsis of the widgets that compose the Sort Control Frame.

A Maintainers Guide to MIDASsort

3

These widgets are listed below:

• MSORT: A message widget.
• TSORTFILE: A text widget used to input the path and name of the sortfile to use.
• BBROWSE: A button widget that launches a graphical file browser
• MS: A text widget that displays the compilation status of the sortfile.
• BEDITFILE: A button widget that launches an TCL window that allows the user to perform basic

editing of the sortfile.
• BCOMPILE: A button widget that launches a C program that parses the input sortfile, extracts de-

tails of the spectra you wish to create then compiles the sortfile and links in the sort libraries. The
parseing program writes tempory files to the /tmp/tcl(pid) directory.

• BSETTINGS: A button widget that launches the settings control frame.
• BSOPTS: A button widget that launches the sort options control frame.
• CSMEDIA: A choice-stack widget that allows the user to specify the input data stream. Currently

the available input data streams are "disk", tape, or using the shared memory buffer of the MIDAS
tape server.

• CSFMT: A choice-stack widget from which the event decoder is selected.
• BIMEDIADATA: A button widget that launches a control frame allowing the user to specify the

Volume/Filenames for either the input tapes or disk files.
• CSMEDIAO: A choice-stack widget that can be used to specify the output device for data.
• CSFMTO: A choice-stack widget allowing the user to specify the format of the data to be written

out.
• MSPEC: A message widget.
• CSOS: A check-box widget. If selected all spectra will be overwritten, else they will be added to.
• CBTHIST: A check-box widget. If ticked Histograming will be enabled (requiring a configuration

file). Histogramming works with all data formats except the GREAT event handler.
• BSPECTRA: A button widget that launches a spectrum browser.
• MSRUN: A message widget.
• MSRSTATE: A message widget displaying the current status of the sort program.

A Maintainers Guide to MIDASsort

4

• BSTART: A button widget that starts/continues the sort program.
• BSTOP: A button widget that pauses/stops the sort program.
• BQUIT: A button widget that destroys the control frame and all visable daughters, then saves the

settings before exiting.
• LIST: A galley widget that displays the messages from some of the programs called by this GUI.

The Sort Settings Frame
This GUI is used to specify the locations/directories in which certain files exist: ranging from the sortfile
directory, to the directory where disk files containg data are kept. In addition it is possible to choose
between GNU and "other" compilers, whether you wish to use the SunSort naming convention, and if
the spectrum memory server should be killed off when the Sort tool is exited from.

It should be noted that all of the variables controlled by this GUI are saved as preferences in the file
$(HOME)/.midas/preferences.

For ease, the figure below shows the names and functions of the different widgets that compose the Sort
Settings Frame.

Figure 4. A synopsis of the widgets that compose the Sort Settings Frame.

These widgets are listed below:

• MSET: A message widget.
• TSETMBDIR: A text widget that shows where the MIDASBASE enviroment variable is set to,

changing the entry in this field does not do anything.
• TSETDIR: A text widget allowing the directory where the sortfiles live to be set. This variable is

A Maintainers Guide to MIDASsort

5

used by the BBROWSE widget on the Sort Control Frame.
• TSETDATADIR: A text widget where the directory containing the data to be sorted can be spe-

cified. This variable is used in the "disc" frame.
• TSETGAINDIR: A text widget specifying the directory where any gain files reside. This feature is

not currently implemented.
• TSETGATEDIR: A text widget specifying the directory in which any GATEFILES reside. This fea-

ture is not currently implemented.
• TSETUM: A text widget where the users Makefile can be specified. This makefile is included in the

makefile generated at compilation time.
• TSETTAB: A text widget used to specify the users configuration table. This Configuration table is

used when data is to be histogramed.
• CBUSEGCC: A check-box. If ticked gcc compilers will be used, else the makefile will assume that

"cc" and "f77" are valid compilers.
• CBSSSNC: A check-box widget used to specify if the sunsort naming convention is used. This really

only affects lists of spectra that are differentiated only by number. In Sunsort this number is the
spectrum id number. If this widget is not ticked then the spectrum name numbering will start at 0.

• CBKMEMSAS: A check-box used to determine if the memsas daemon that is associated with this
sort will be killed when the sort package exits. (The memsas still remains if the Sort Control frame is
displayed/minimised).

• BMEMSAS_CTRL: A button widget that launches the memsas_ctrl frame. This GUI is used to
show if any daemons are running on your machine, and their associated ports.

• BRESETDISPLAY: A button widget that forces a redisplay of all the entry points in this frame.

To kill the frame the [x] has to be used

The MEMSAS Control Frame.
In order to sort spectra using this package a memsas daemon must be running. When the Sort Control
Frame is launched it is determined whether any daemons are running, and if any resources (localsas) are
allocated. If not a daemon is started, this frame displays the running daemons and the allocated re-
sources. It is also posible to kill off memsas daemons using this frame.

For ease, the figure below shows the names and functions of the different widgets that compose the Sort
Settings Frame.

Figure 5. A synopsis of the widgets that compose the Sort Memsas control Frame.

A Maintainers Guide to MIDASsort

6

These widgets are listed below:

• MMEMSAS1: A message widget.
• GMEMSAS1: A gally widget used to display the "localsas" resources currently allocated to this ses-

sion. The user can't modify any of the values displayed directly.
• MMEMSAS2: A message widget.
• LMEMSAS1: A list widget, used to display all of the memsas daemons currently running on the host

machine. The daemons are identified by portnumber (10230-10249), process ID and the owner. Indi-
vidual daemons can be selected by clicking on them.

• BMEMSAS1: A button widget used to send a SIGTERM signal to the selected daemon, thus killing
it, and removing any spectra stored in its shared memory.

• BMEMSAS2: A button widget that destroys this frame.
• BMEMSAS3: A button widget that forces a redisplay of the data shown in the frame.

The Sort Options Frame.
As the sort runs there are several options that users would wish to have. These options are controled
from the sort options frame. These options make use of shared memory and can be set before a sort is
started or as the sort runs.

For ease, the figure below shows the names and functions of the different widgets that compose the Sort
Options Frame.

Figure 6. A synopsis of the widgets that compose the Sort Options Frame.

These widgets are listed below:

A Maintainers Guide to MIDASsort

7

• MFSO: A message widget.
• CSDSO: A check-box widget. If ticked the BDSO widget becomes active, allowing debugging to be

enabled.
• BDSO: A button widget that launches the debug levels frame.
• BCFTAB: A button widget used to launch the user_var frame, from which the user can change vari-

ables as the sort runs.
• BGAINTAB: A button widget, not implemented at present.
• BGATETAB: A button widget that is not implemented.
• BVDATA: A button widget that launches the view_data frame, from which the user can see the raw,

unformatted data in the vicinity of the current block position.
• CSDDSO: A choice-stack widget, that allows the user to set the update interval for the sort control

frame.

The Debug Levels Frame.
Given the compelxity of this sort package it is difficult to debug individual elements. The released ver-
sion is as free of bugs as is possible, but bugs will still be present. In order to aid in any debugging pro-
cess there are a number of debug levels (for want of a better word) available. When enabled these
"levels" will print out data to stdout which can be checked to see if the software is performing as expec-
ted.

These debug levels are activated via this GUI and use shared memory. To use them in your code the fol-
lowing template should be used:

if ((*debug_level & GATE) == GATE)
{
(void *) printf("gate1d : In 1D gating routine called with\n"

" : data = %i\n", data
);

}

Where the user would substitute "GATE" for one of the other defined variables. These different vari-
ables are discussed later in this section. However as far as the end user is concerned there are four debug
toggles available: USER1 USER2 USER3 and USER4.

For ease, the figure below shows the names and functions of the different widgets that compose the De-
bug Levels Frame.

Figure 7. A synopsis of the widgets that compose the Debug Levels Frame.

A Maintainers Guide to MIDASsort

8

These widgets are listed below:

• MDEBUG0: A message widget.
• CBDOALL: A check-box widget. If toggled this will set all of the available debugging options on.
• MDEBUG01: A message widget.
• CBDOU0: A check-box widget. If ticked this will set all user debug toggles to on.
• CBDOU1(2,3,4): Four check-box widgets that are used to toggle USER1 - USER4 respectively.
• MDEBUGO2: A message widget.
• CBDOL0: A check-box widget. If ticked all of the Library debug levels are set.
• CBDOL1(2,3,4,5): Five check-box widgets that are used to toggle INC1D (all subroutines involving

1D spectra), INC2D (all subroutines involving 2D spectra), CONV1D, UGM (all subroutines in-
volving gainmatching)and HIST (all subroutines involving histograming).

• MDEBUGO3: A message widget.
• CBDOM0: A check-box widget. If ticked all of the MAIN debug levels are set.
• CBDOM1(2,3,4,5,6,7): Seven check-box widgets that are used to toggle SPECTRA (spectrum cre-

ation routines), END (the End routine), DECIPHER (the decipher_data routines), GET (the routines
that read the data), PARSE (the argument parsing routine), MAIN (the sort_main routine), SHARED
(shared memory routines) and GATE (gating routines).

The View Data Frame.
This frame is used to allow the user to look at the raw data before it has been unravelled by the event de-
coder routine. In order to obtain the data the user provides two variables: the first determines the range
of data to be viewed, the second the format to look at the data (8/16/32bit words). This information is
then passed to the program midasSortfb as arguments, which returns the current position in the data
block and a stream of data to be painted to the screen. The data word at the current position in the block
is highlighted in red.

A Maintainers Guide to MIDASsort

9

For ease, the figure below shows the names and functions of the different widgets that compose the
View Data Frame.

Figure 8. A synopsis of the widgets that compose the View Data Frame.

These widgets are listed below:

• MVD1: A message widget, used to display the current position in the block. Note that this is the ac-
tual position as it is assumed that all data words are 16bit prior to decodeing.

• GVD1: A Galley widget that is used to display the raw data. The user can not modify anything in
this widget.

• BVD1: A button widget used to destroy this frame.
• CSVD1: A choice-stack widget used to determine the range over wich the data should be displayed.

This range is with respect to the current position. If the choice goes out of bounds the bounds are
altered automatically.

• CSVD2: A choice-stack widget that is used to specify the number of bits per word.
• BVD2: A button widget, used to force a redisplay of this window. This window is also redisplayed if

either CSVD1 or CSVD2 are altered.

The User Variables Frame.
Occasionally the user may want to have the ability to change some variables as the program is running.
While this is not recomended, this option has been incorperated into MIDASsort. These variables can be
set/modified by means of the "User Variables" frame. Four different types of variable can be used, int,
unsigned int, short int and float. The variables are written to shared memory either before the sort starts
or as the sort progresses. These variables are only written to shared memory when the "Write to Shared
Memory" button is pressed - thus the numbers that are displayed may not reflect the actual variables.

For ease, the figure below shows the names and functions of the different widgets that compose the User
Variables Frame.

Figure 9. A synopsis of the widgets that compose the User Variables Frame.

A Maintainers Guide to MIDASsort

10

These widgets are listed below:

• MUV1(2,3,4,5): Message widgets.
• TUV1(2,3,4): Text widgets that are used to input/display the integer variables.
• TUV5(6,7,8): Text widgets that are used to input/display the unsigned integer variables.
• TUV9(10,11,12): Text widgets that are used to input/display the short integer variables.
• TUV13(14,15,16): Text widgets that are used to input/display the float variables.
• BUV1: A button widget that is used to initiate the writing of these variables to shared memory.

The Tape File Info Frame.
If the data to be sorted is contained on tape the user needs, at a minimum to specify the number of tapes
that are to be read. In addition if the tapes in question are ANSI format then information about the file-
name is required. MIDASsort assumes that the filenames are different, so tapes are identified via a num-
ber. Once all of the required data has been input it is saved to the file tape.info in the tmp directory
associated with current MIDAS session.

For ease, the figure below shows the names and functions of the different widgets that compose the Tape
File Info Frame.

Figure 10. A synopsis of the widgets that compose the Tape File Info Frame.

A Maintainers Guide to MIDASsort

11

These widgets are listed below:

• MIMEDIAT: A message widget.
• NIMEDIATAPES: A number widget, used to specify the total number of tapes to be read.
• MIMEDIA: A message widget.
• IMEDIALIST: A list widget used to display tape information. Individual items can be selected from

this list.
• NMEDIAVAL: A number widget used to specify the tape number to be assigned to the current file

name.
• TIMEDIANAME: A text widget used to specify the name (6 chars) of a file to be read.
• BIMEDIAADD: A button widget, used to add tape info to the list.
• BIMEDIAREMOVE: A button widget used to delete the selected tape file from the list.
• BIMEDIAOK: A button widget that writes the data to disk and exits this frame.

The Disk File Info Frame.
If the data to be sorted reside on a disk, then that information needs to be provided to the sort program.
This is achieved through the "Disk Info" frame.

There are three options for specifying the names of files to be read:

i. Multiple files with names in the format name#.extension, where "#" represents a number.
ii. Multiple files with names in the format name.extension#, , where "#" represents a number.
iii. Individual files.

In the first two cases the individual text can be specified, as can the start and stop numbers, the tcl frame
will then generate the complete list of filenames. In the latter case names must be specified individually.

In addition the user must specify the block size, in bytes, of the disk file to be read. This will ensure that
all of the data is sorted, in the majority of cases this will be 16384.

For ease, the figure below shows the names and functions of the different widgets that compose the Disk
File Info Frame.

A Maintainers Guide to MIDASsort

12

Figure 11. A synopsis of the widgets that compose the Disk File Info Frame.

These widgets are listed below:

• MDISK: A message widget.
• LDISK: A list widget used to display the information relating to the disk files to be read. If the file

disc.info is present then the contents of this file are added to the list. It is possible to select the
different disk files in this widget.

• CSDISK: A choice-stack widget used to specify which of the filename formats is being used to spe-
cify the files to be read (see above).

• NDISK: A number widget used to specify the start number for files using formats i or ii. The value
in this widget is not used for the "custom" format.

• NDISK1: A number widget used to specify the stop number for files using formats i or ii. The value
in this widget is not used for the "custom" format.

• CSDISK1: A choice-stack widget, used to specify the size of the blocks to read. The block size is
measured in bytes.

• TDISK: A text widget that is used to specify the first part of the filename (formats i and ii) or the en-
tire filename (format iii). The user can either type the filename directly into this widget, or can use
the "Browse" button to pick the file graphically. If this latter option is chosen, and formats i and ii
are specified the user will need to edit this text before "adding" to the list.

• TDISK1: A text widget that is used to specify the text to be appended to the filename. This widget is
only enabled for formats i and ii.

• BDISK6: A button widget that is used to start a graphical browser to pick filenames.
• BDISK0: A button widget, used to add files to the list. If formats i and ii are specified then the files

between start and stop will be created.
• BDISK1: A button widget, used to redisplay the list.
• BDISK2: A button widget that is used to remove the currently selected filname from the list.

A Maintainers Guide to MIDASsort

13

• BDISK3: A button widget, used to clear all files from the list.
• BDISK4: A button widget used to save the data to the disk file disc.info in the current tmp dir-

ectory. Once this has been competed the frame is destroyed.
• BDISK5: A button widget, used to destroy the frame without saving any changes to file.

Control Programs
Although much of the program control is handled within the Tcl code several "C" programs have been
written that are started by the GUI. The source code for these programs reside in the MIDASsort/
Utilities directory.

The programs currently used by MIDASsort are:

i. compile_midas_sort: This program is used to parse the sort file, generate the Makefile
make.midas_sort and run the make routine.

ii. filestatus_midas_sort: This program is used to check if the sortfile is compiled, if the
source is newer than the executable and if the configuration files are present in the tmp directory.
The argument passed to the program is the name (and path) of the source file. The output from the
program is specified as:

• 0: No executable file is present.
• 1: The program is compiled.
• 2: The executable is older than the source.
• 3: There is an executable file, but no configuration files are present in the tmp directory.

iii. midasSortfb: This program is used while the sort is in progress to extract the current position in
the data block and the raw data. This information is stored in shared memory. The arguments that
are passed to the program are range (how much data is to be displayed), wrdbits (display the data is
8/16/32 bit words), action ((r)ead/(w)rite/(d)elete). There are two outputs from the program: the
first is the current position in the block (written to the file msdata.txt) and a stream of data to
stdout (captured by the tcl).

iv. midasSortshm: This program is the principle method of accessing the shared memory compon-
ents used by the sort program. The arguments to this program are action((r)ead/(w)rite/(d)elete),
variable id (1-21) and value. The numbers associations are:

1. : action - pause/restart/kill the sort.
2. : debuglevel - what debug options are set.
3. : toggle_hist - enable histograming.
4. : user variable int
5. : user variable int
6. : user variable int
7. : user variable int
8. : user variable unsigned int
9. : user variable unsigned int
10. : user variable unsigned int
11. : user variable unsigned int
12. : user variable short int
13. : user variable short int
14. : user variable short int
15. : user variable short int
16. : user variable float
17. : user variable float
18. : user variable float
19. : user variable float

v. return_exe: program that returns the name of the executable file. The argument is the source
file.

A Maintainers Guide to MIDASsort

14

vi. tapestatus_midas_sort: program that interogates the named tape drive, returning a string
relating to its status:

• Exabyte 8500: Ready - An exobyte tape drive is ready for use.
• DLT: Ready - A DLT tape drive is ready for use.
• DLT1: Ready - A DLT1 tape drive is ready for use.
• Tape Ready - An unknown tape drive is ready for use.
• No such device - the chosen device is not connected/powered up.
• No Tape Loaded.
• Permission denied - you do not have permission to acces this drive.
• Device busy - The device is in use/performing an operation.
• Device error.

vii. ts_status_midas_sort: This program checks for the presence of a shared memory segment
with the id of the MIDAS TapeServer shared memory. Note the program does not test that the
TapeServer is running! There is no argument. The output from this program is:

• No Connection : The shared memory does not exist.
• Good Connection : The shared memory exists.

Sort Package Libraries.
The programs that make up the sort package library are split into two: those relating directly to the sort
(found in $(MIDASBASE)/MIDASsort/Sorting) and those relating to the rest of the package
(found in $(MIDASBASE)/MIDASsort/Libs)

Sort-main
The "main" routine is defined in the file sort-main.c. From this routine everything else is called, the
order in which this is done is displayed in the next session.

Once the main routine has been entered the first action is to setup the signal handlers, followed by spe-
cifying that the routine "end_prog" should be called whenever the program exits. This is important as if
an error forces the premature end of the sort the value "debug_status" is printed out. This variable
changes as the program steps through in order to make it easier to determine the point at which the bug
is found.

It should be noted, that as soon as the debug status has been changed via the GUI it takes imeadiate ef-
fect within the program.

Although the control of the program is handled via shared memory the state of the "action" variable is
only checked at the end of each data block. So users should not be concerned if the program continues to
run after it has been told to pause or stop.

Program flow
The figure below shows how the different routines relate to each other, and the interation between dif-
ferent routines.

Figure 12. Program flow datagram.

A Maintainers Guide to MIDASsort

15

Routines to read the data
This section deals with the routines that read blocks of data into the program. At present three different
routines are provided:

1. tape - This routine reads blocks of data from tape.

A Maintainers Guide to MIDASsort

16

2. disc - This routine reads blocks of data from disk.
3. midasTS - This routine reads data from the shared memory allocated by the MIDAS TapeServer.

These routines are written as modules that are loaded dynamically at runtime. The reason for this is to
allow the same sort program to access data from different sources without recompiling the program
(assuming the same session).

As plugin modules they all have the same format and definition. The routine definition is:

short *get_block(short **num, int **new, int *runinfo);

The return value is a pointer to a short that contains upto 65536 elements. The value "new" is a variable
to determine if a new file is to be read. The value "runinfo" is now depreciated.

If you, or a user, wants to follow the process by which these routines extract the data the debug toggle
"GET" should be set to on. If additional information is required to be printed out the following formal-
ism should be used.

if ((*debug_level & GET) == GET)
{
printf("get_block : About to open \"disc.info\" ...\n");
}

tape.so

As the name implies, this routine reads data from tape. The value "num" refers to the current tape num-
ber. Details about the files to be read from tape are obtained from the file tape.info which is stored
in the tmp directory that is allocated to the current MIDAS session.

The return value from the "C" library function "read" (the number of bytes read) is used to determine the
action. The segment of code that deals with this return value is shown below:

switch (bsize)
{
case -1:
printf("tape : Error, %s returned %i\n", tdev, bsize);
exit (0);
break;
case 0:
if (at_eof)
{
at_eov = 1;

}
at_eof = 1;
mt.mt_op = MTFSF;
mt.mt_count = 1;
ioctl(fd, MTIOCTOP, &mt);
break;
case 80:
if (at_eof)
{
while (num_tapes--)
{
if (ansi_fmt)
{
tnum = (short int)(runinfo[ctr++]);

A Maintainers Guide to MIDASsort

17

if ((*debug_level & GET) == GET)
{
printf("tape : tnum = %i\n", tnum);
}
prun = &runinfo[ctr++];
memcpy(run, prun, sizeof(run));
if ((*debug_level & GET) == GET)
{
printf("tape : Run = %s\n", run);
}
ctr++;
}

}
}
at_eof = 0;
break;
default:
at_eov = 0;
at_eof = 0;
*new = (int *)tctr;
*num = block;
return block;
break;

}

As can be seen, it is assumed that all return values greater than 80 bytes refer to data. Obviously this is
not completely true. For example some formats use upto 256 bytes as message blocks on tape. This
should be born in mind when data decoders are being written.

disc.so

As expected this module reads data from a/multiple disk file(s). The information about the files to be
read are stored in disc.info in the tmp directory of the current MIDAS session. Unlike the case of
tapes, the data blocks in disk files can be accessed at any size the user tells the program. This can lead to
the loss of data, so the information that is stored in disc.info must be acurate.

This routine also checks that the file that is to be accessed has a sensible size. If the file size is 0 then it
will ignore that file.

midasTS.so

This module will read data from the shared memory allocated by the MIDAS TapeServer. It ascertains
the relative age of the data so that if you are waiting for data to come into the TapeServer the same block
of data will not be sorted over and over again. There could exist a case where you only sort a fraction of
the data being sent to the TapeServer - this will only occur if the overheads for the sort are greater than
the spead at which data is being passed to the TapeServer.

Routines to decipher the data
As with the routines that read the data the files described here are plugin modules. This being the case
they all have the same definition:

short decipher_data(unsigned short *raw_data, unsigned int *id,
unsigned int *adc, unsigned int *numwrds)

raw_data is a pointer to the memory containing the data block. id is a pointer to an array containing the
detector id data words. adc is a pointer to the array containing all of the data associated with each detect-

A Maintainers Guide to MIDASsort

18

or id. nwrds is unused. The return value is the event multiplicity or equivalent.

Debug statements within this module type are defined using the following formalism.

if ((*debug_level & DECIPHER) == DECIPHER)
{
printf("decipher_data : Other data wrd\n");
printf(" : id = %i\n", id [0]);
printf(" : Module no = %i\n", adc [0]);
printf(" : Info Code = %i\n", adc [1]);
}

The following data formats are currently supported:

• Eurogam
• Exogam
• GREAT

Routines used during the sort
These routines can all be found in the Lib directory.

create_shared_memory This routine creates the shared memory segments for the program. In
order to allow more that one user at a time, the key comprises the tcl
tmp directory that is created by the MIDAS-session and the letter 'a'.

create_spectra This routine creates the named spectra via the memsas daemon. If the
"overwrite" flag is set to 1 then any spectra that exist with the same
names are deleted before being created.

end_prog This routine will always be called when the program exits - even if
there is an error condition. The routine ensures that we tidy up and
print out any information that may be helpful to understand why the
program crashed - if it did.

histogram_data This routine will, if invoked, generate histogram spectra of the data
being analysed.

parse_args This routine handles the arguments that are passed to the program at
the begining. It creates any control files that need to be and sets all of
the appropriate flags.

plugin_loader This is the routine that loads our shared libraries: the event decoder
and the get_event routine. If any more shared libraries need to be
loded than this routine should be modified.

prog_pid This routine returns the process id for the program as it runs. This PID
is required when the program is being controlled by signals
(depreciated).

read_cfg_file In order to histogram the data a configuration file, identical to that
used by Exogam is required. This routine reads in such a file.

read_debug_file This routine reads the debug file allowing the correct debug level to be
set. The debug file is a text file containing a list of all of the possible
debug options and a toggle flag (0/1).

read_specarray The spectra that are to be created are extracted from the sort file and
written to a seperate file. This file is then read when the sort is started.
This file contains the filename, fileid, length and spectrum type for all

A Maintainers Guide to MIDASsort

19

of the spectra that we are intersted in creating.

sort-signals This routine sets up the signal handlers for the sort, ensuring that all
errors are caught.

sort_got_sig This routine has now been depriciated.

swap This file contains two routines that can be used to byteswap 16 bit and
32 bit words

Routines Available to the user
These routines can all be found in the Sorting directory.

gainmatch The prototype for this routine is: int gainmatch (float a, float b, float
c, int val). i.e. if you provide the variables a, b, c and a value - val - to
be modified the returned value will be related to the input val by: re-
turn = a + (b * val) + (c * val * val).

gate1d This routine returns 0/1 id a data value (data) lies in a list of limits
(limits). The routine has the prototype: int gate1d(int *limits, int
data). *limits is a 1D array consisting of 2n + 2 elements, where n is
the number of lo-hi pairs, the routine lnows that the list is complete
when it encouters two sequential zeros..

gate2d Uses the routine pnpoly to determine if a vertex lies within a polygon.
The prototype is int gate2d(int *limits, int x, int y). Here x and y are
the coordinates of the point to be tested, the array limits consists of 2n
+ 2 elements. Each element is (x,y) for the verticies of the polygon.
The list should be terminated by two zeros.

inc1d void inc1d(int id, int val). This routine will increment chanel "val" in
spectrum "id" by 1. The routine checks that the spectrum id and the
channel are both valid.

inc2d void inc2d(int id, int xval, int yval). This routine is the same as inc1d
but for a 2D spectrum.

incv1d void incv1d(int id, int chan, int val) - increment channel "chan" in
spectrum "id" by "val" counts.

incv2d void incv2d(int id, int xchan, int ychan, int val) - as incv1d but for a
2D spectrum.

read2d int *read2d(char *fname, int set) - Read in a data file containing a
sequence of polygon vertices. The input file format is the same as that
output by MIDAS. The data file is specified via the string "fname". If
the file contains more than one polygon array, the value "set" specifies
which one to use. The return is an integer array.

set1d void set1d(int id, int chan, int val) - This routine will set the counts in
channel "chan" of spectrum "id" to "val".

set2d void set2d(int id, int xchan, int ychan, int val) - As for set1d but for a
2D spectrum.

val1d int val1d(int id, int chan) - Returns the number of counts in channel
"chan" of spectrum "id".

val2d int val2d(int id, int xchan, int ychan) - As for val1d, but for a 2D
spectrum.

A Maintainers Guide to MIDASsort

20

Writing Sort Programs
Irrespective of the language that the sort program is written in (C or Fortran) it must have the following
basic structure:

*trigger
128
*oned
1 mult 4096
2 adc 4096
4 val 16384
5 val 16384
*twod
3 tproj 4096 4096
*vars
*sort
int sortin(void)
{
}

Some of these "starwords" arise from a historic context and are currently not implemented: e.g.
"*trigger" and "*vars". The "*oned" and "*twod" words are used to deliniate the definitions of 1D and
2D spectra. The "*sort" word is used to define the start of the users sort routine. Prior to "*sort" the file
can be commented using the "#", after "*sort" comments must be written as if you were writing a "C" or
"Fortran" program.

The user can specify routines called init and finish which are called at the start and end of the sort re-
spectivly. If these two routines are not specified they are automatically added at compile time.

In addition any other routines that the user may wish to call can be specified in this file.

In general the best way to see how to use the different functions is to look at the example sort files.
These can be found in the Examples directory.

In the following sections a detailed description of how to write sort programs in both "C" and "Fortran"
is presented.

Global Variables
In order to make the data that has been read from Tape/Disk/Memory available to the users sort routine
three "global" variables have been implemented. The method by which these are accessed is determined
by the programming language that you are using. These variables are:

gid This is an integer array containing a list of the ADC id's. Note that this
is often the "raw" id and would need further decompisition to obtain
numbers that the user would be more familier with.

gdata This is an integer array containing all of the data words that are associ-
ated with a particular detector id. A maximum of 1024 wrds per id is
allowed.

mult This is the number of gid - gdata word pairs.

Using "C"
A sample sort file written in "C" is shown below:

A Maintainers Guide to MIDASsort

21

#--> === <--#
#--> Sample sort program, written to extract pulse data <--#
#--> from the data taken in Koln for the GRT test ! <--#
#--> === <--#
*trigger
#--> === <--#
#--> this *word is not currently implemented <--#
#--> === <--#
128
*oned
#--> === <--#
#--> Here we shall define our 1D spectra <--#
#--> <--#
#--> This can be achived in a couple of different ways <--#
#--> <--#
#--> id name len - Make sure the ID's are unique <--#
#--> <--#
#--> >> A list of spectra called grpnameidstart <--#
#--> idstart...idstop grpname len <--#
#--> <--#
#--> === <--#
1 mult 4096
2 adc 4096
4 val 16384
5 val 16384
*twod
#--> === <--#
#--> 2D spectra are defined in the same way, using the <--#
#--> *twod word. You can specify the size of the x and <--#
#--> the y axis. <--#
#--> === <--#
3 tproj 4096 4096
*vars
#--> === <--#
#--> This *word has been depreciated <--#
#--> === <--#
*sort
//--> == <--//
//--> So this is where the sort is defined, note the <--//
//--> change in our comments <--//
//--> <--//
//--> -- First include any header files that are reqd <--//
//--> == <--//
#include <stdio.h>
#include <stdlib.h>
//--> == <--//
//--> So we can define the init routine, all we shall <--//
//--> do is to print out an inane comment to let us <--//
//--> know where we are! <--//
//--> == <--//
int init(void)
{
printf("In user init ...\n");

return 0;
}
//--> == <--//
//--> Now define the sortin routine. Remember this is a <--//
//--> must, if it is not included your sort will not <--//
//--> work!! <--//
//--> == <--//
int sortin(void)
{
//--> === <--//

A Maintainers Guide to MIDASsort

22

//--> Define some variables for use within this <--//
//--> routine. - Only declare what you need!! <--//
//--> === <--//
FILE *f;
int t = 0;
int i, j;
static int ctr = 0;
char fname[128];
//--> === <--//
//--> Lets increment a 1D spectrum with our event mult <--//
//--> === <--//
if (mult > 0 && mult < 4096)
{
inc1d(1, mult);

}
//--> === <--//
//--> Lets increment a 1D spectrum with the id's of the <--//
//--> ADC's extracted from the event. <--//
//--> === <--//
for (i = 0; i < mult; i++)
{
if (gid[i] >= 0 && gid[i] < 4096)
{
inc1d(2, gid[i]);

}
}

if (*nwrds > 0 && *nwrds < 16384)
{
inc1d(5, *nwrds);
}

for (j = 0; j < mult; j++)
{
for (i = 5; i < 500; i++)
{
if (gdata[i + (j * 1024)] -7800 > 0 &&

gdata[i + (j * 1024)] -7800 < 4096)
{
inc1d(4, gdata[i + (j * 1024)] -7800);
//--> === <--//
//--> Now increment a 2D spectrum ... <--//
//--> === <--//
inc2d(3, i, gdata[i + (j * 1024)] -7800);
}
if (((gdata[i + (j * 1024)] - 7800) > 1000) &&

((gdata[10 + (j * 1024)] - 7800) < 100))
{

t = 1;
}

}
if (t)
{
sprintf(fname, "/home/dea/pulse%i.txt", ctr++);
f = fopen(fname, "w");
for (i = 5; i < 500; i++)
{
fprintf(f, "%4i %i\n", i, gdata[i + (j * 1024)]);
}
fclose(f);
if (ctr > 10)
exit(0);

}
}

A Maintainers Guide to MIDASsort

23

return 0;
}
//-->=== <--//
//--> Define the finish routine <--//
//-->=== <--//
int finish(void)
{
//-->=== <--//
//--> Just print something out to let us know ... <--//
//-->=== <--//
printf(" Time to gooooooooooo\n");
return 0;

}

Using "Fortran"

ToDo List

i. Complete this manual.

ii. Find a permanent maintainer for this package.

iii. Increase the list of decipher routines.

iv. Increase the list of user libraries.

v. Add support for writing data back out.

vi. Check migration to windows.

A Maintainers Guide to MIDASsort

24

