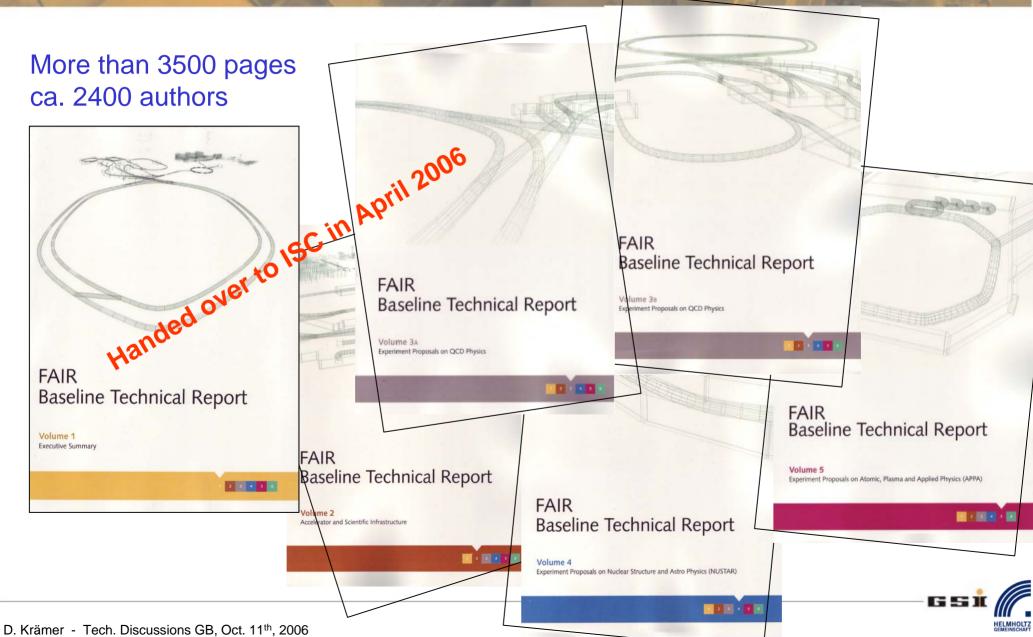

Workpackages and In-Kind Contributions to FAIR

- The FAIR Project
- Preparatory Phase R&D for FAIR
- Workpackages and In-Kind Constribution

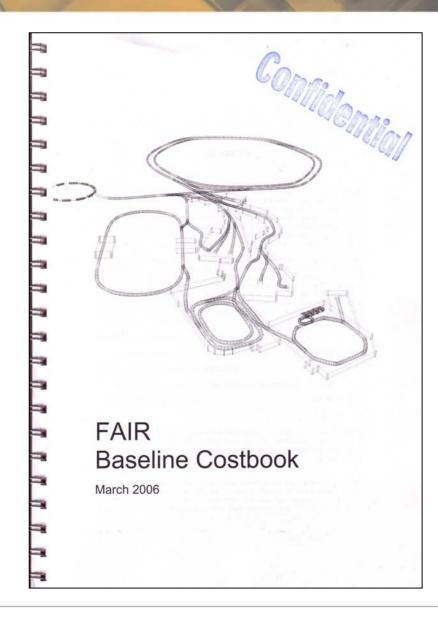


The FAIR Accelerator Complex

The FAIR Baseline Technical Report

Technical Advisory Committee CORE-A CORE-E Locked for more than 5000 individual items, costed them,

Intensive search for forgotten items ...


- Sept 7 8, 2005
- Oct 26
- Oct 27/28
- Oct 31 Nov 1
- Nov 3
- Nov 15 16
- May 2006

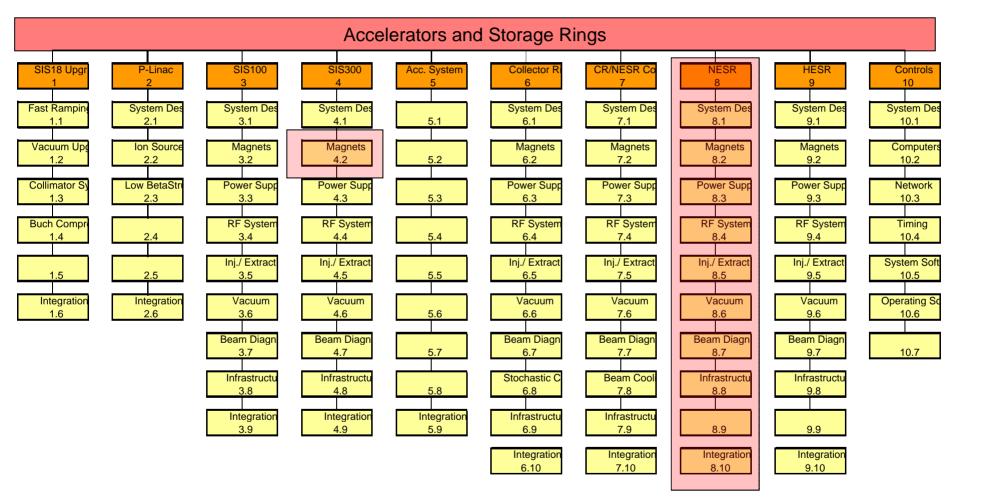
beam diagnostics p-linac power supplies cryogenics warm magnets cold magnets civil construction

The Costbook Rev. 3.0

Investment Cost:

- Accelerators w/o sFRS* 593 M€
- Civil Construction
 Experiments incl. sFRS

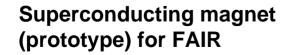
- 593 M€ 322 M€ 200 M€
- Manpower 2400 FTE according to FCI (1 FTE=77k€/y) 185 M€


"The Costbook reflects the present status of the estimate. The facility costs are evaluated on a component basis and then aggregated for the subsystems and finally for the total facility.

This adds up to a total of 1114 M€in investment cost."

Supplement to FBTR

WBS Structure


-10

Complete R&D of Critical Items within the Prepartory Phase

- Rapidly-cycling superconducting magnet technology for synchrotrons
- Superconducting magnets for large aperture devices
- Beam phase-space compression by electron-beam and stochastic cooling
- Cryogenics ...

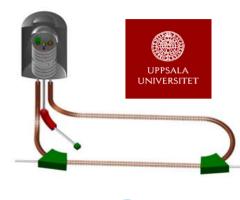
Electron Cooler at GSI

Stochastic Cooling Structure

BNL – SIS 300 superconducting ramped dipole

- JINR SIS100 s.c. ramped dipole & quadrupole
- IHEP SIS300 s.c ramped dipole
- BINP SIS100 curved dipole
- BNN SIS100 straight dipole
- Toshiba Super FRS mulitpole triplet
- Spain consortium NESR magnets, vacuum, power converter
- Chinese consortium CR superconducting dipole
- BINP RF cavity
- BINP fast ramped power converter for ECOOL
- BINP Feasibility studies/ Design studies on
 - Septa, ER-Electron Ring, Electroncooling, Electron-Target at NESR
- ACCEL Feasibility study on injection/extraction at SIS100/300

Preparatory Phase R&D by GSI & Partner Institutes


IHEP Protvino

SIS300 magnets

NESR Electron Cooling

Forschungszentrum Jülich

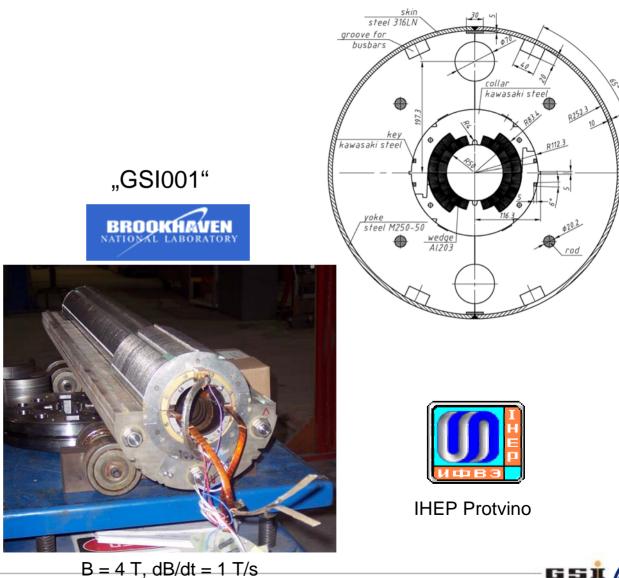
CNA / CNRS

BINP Novosibirsk

D. Krämer - Tech. Discussions GB, Oct. 11th, 2006

Variable Frequency Cavities

SIS100 rapidly cycling sc magnets



SIS300 R&D: Dipole Magnet

651

Coil ID, mm	100
Good field diameter, mm	80
Central field, T	6
Field ramp rate, T/s	1
Temperature margin, K	~1
Magnetic length, mm	2909
Field cycle, T	1.6 - 6 - 1.6
Time cycle, s	4.4 - 11 - 4.4

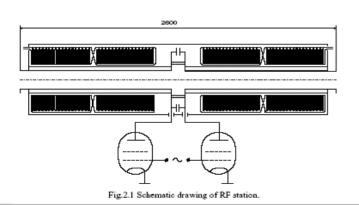
INFN

Bend prototype dipole

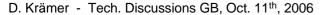
3.7 M€ & ~40 FTE

Istituto Nazionale di Fisica Nucleare

RF-Stations for SIS100 (10th Harmonic)


GSI

HELMHOLT


BINP Novosibirsk

Frequency range RF voltage Ferrite type Number of ferrite for	
Number of ferrite for	unit 68
Number of unit	29

BINP Cavity built for IHEP (Lanshou)

R&D on Stochastic Cooling: Test tank for cryogenic measurements

FAIR

Technical negotiations between GSI/FAIR and partner institutes

China	-	CR superferric bending magnets	Oct. 2004
India	-	VECC on sc magnets	Dec. 2005
Italy	-	INFN on SIS300 bending magnets	Jan. 2006
France	-	CNRS-CEA on SIS300 multipole magnets	Feb. 2006
		and ECR for p-Linac	
UK	-	RAL on cryogenics	Feb. 2005
Russia	-	JINP, IHEP, ITEP, BINP	May 2006
Spain	-	CIEMAT on NESR magnets, vacuum etc.	May 2006

Non of these activities of the preparatory phase imply a decision who finally will procure the components!

All partners will be free to propose their in-kind contribution.

Following the structure of WBS and Costbook 94 Workpackages have been definied

Assumption: due to legal regulation Germany procures all buildings (~300 M€) ~ 186 M€ for man-power (to be financed by GSI) Consortium KFZ Jülich, TSL and GSI procure HESR (~100 M€)

i.e. ~ 300 M€ for Germany and ~ 300 M€ for the partners for in-kind contributions

Having ~100 WPs ⇒ typical value 6 M€/WP, i.e. 0,5% of total sum

Compatible with 1% as minimum share for FAIR-shareholders.

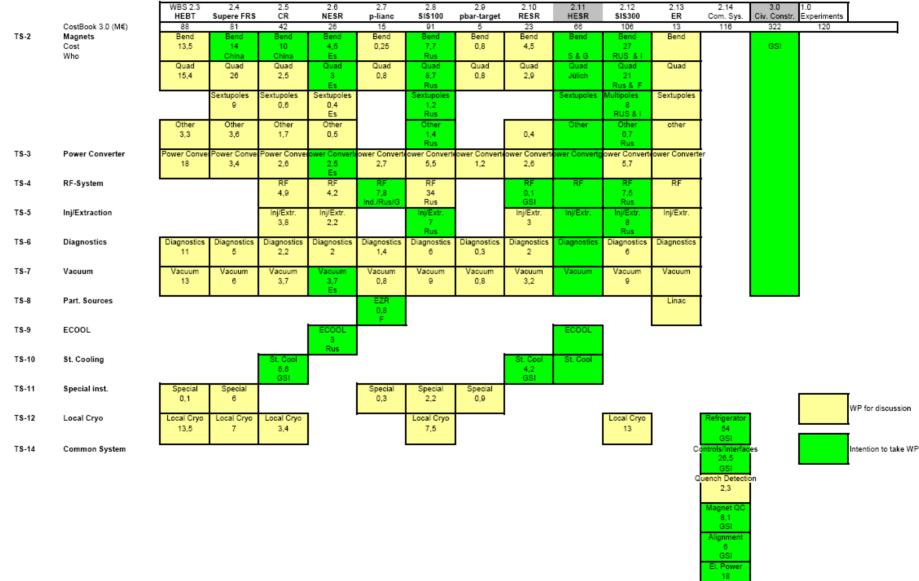
Definition of 94 Workpackages

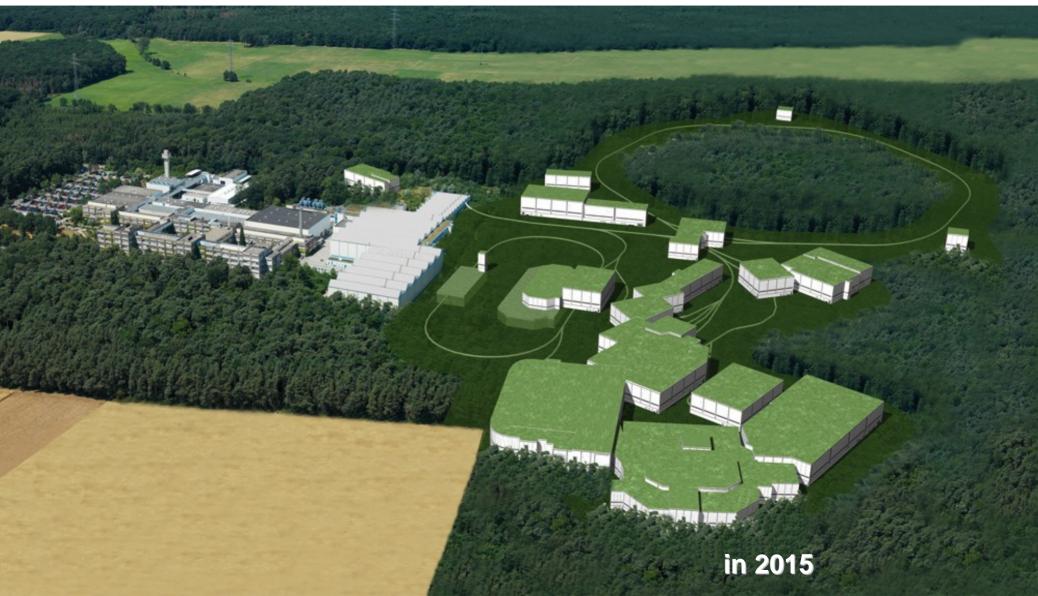
P

MHOLT

FAIR WPs

I AIL																_
		WBS 2.3 HEBT	2.4	2.5 CR	2.6 NESR	2.7	2.8	2.9	2.10 RESR	2.11 HESR	2.12 \$I\$300	2.13 ER	2.14	3.0 Civ. Constr.	1.0 Experiments	
	CostBook 3.0 (M€)	79,2	Supere FRS 72,9	37,8	23,4	p-lianc 13.5	SIS100 81,9	pbar-target 4.5	20,7	59,4	95,4	11,7	Com. Sys. 104.4	289,8	Experiments 108	
TS-2	Magnets	Bend	Bend	Bend	23,4 Bend	Bend	Bend	Bend	Bend	Bend	Bend	Bend	104,4	208,0	100	
102	Cost	12,2	15	9	4	0,22	7	0,7	4	Della	24	Denia		GSI		
	Who		China	China	Es	-,	Rus			S & G	RUS & I					
		Quad	Quad	Quad	Quad	Quad	Quad	Quad	Quad	Quad	Quad	Quad				
		14	23	2,2	2,7	0,7	8	0,7	2,6		19					
			0.1.1		Es		Rus				Rus & F					
			Sextupoles 8	Sextupoles 0,5	Sextupoles 0,4		Sextupoles 1,1			Sextupoles	Multipoles 7	Sextupoles				
			°	0,5	Es		Rus				RUS & I					
		Other	Other	Other	Other	1	Other	1		Other	Other	other				
		3	3,3	1,5	0,4		1,3		0,4		0,6					
							Rus				Rus		l			
TS-3	Power Converter		Power Conve							tower Convert		ower Convert	er			
		16	3	2,4	2,3	2,3	5	1,1	2,4		5,2					
⊺S-4	RF-System		L	RF	Es RF	RF	RF		RF	RF	RF	RF				
13-4	Kr-aystem			4,4	3.8	7	31		0,1	rsr-	6,8	R.F				
				-,-	0,0	Ind./Rus/G	Rus		GSI		Rus					
TS-5	Inj/Extraction			Inj/Extr.	Inj/Extr.		Inj/Extr.	1	Inj/Extr.	Inj/Extr.	lnj/Extr.	Inj/Extr.				
				3,5	2		6		3		7	-				
					-	-	Rus				Rus		l .			
TS-6	Diagnostics	Diagnostics	Diagnostics	Diagnostics 2	Diagnostics 1.8	Diagnostics	Diagnostics	Diagnostics	Diagnostics	Diagnostics	Diagnostics 5.4	Diagnostics				
		10	4,5	2	1,8	1,3	5,5	0,3	1,8		0,4					
TS-7	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum				
101	vaodam	12	5,4	3,4	3,4	0,7	8	0,7	2,9	v dodami	8	vaodam				
					Es											
TS-8	Part. Sources					EZR						Linac			-	
						0,7										
TS-9	ECOOL				ECOOL	F	T			ECOOL	-		L			
19-9	ECOOL				2,7					ECOOL						
					Rus											
TS-10	St. Cooling			St. Cool		-			St. Cool	St. Cool	1					
				6					3,8							
				GSI	J				GSI							
TS-11	Special inst.	Special	Special			Special	Special	Special							-	r
		0.1	5,5			0,3	2	0,8								WP for discussio
TS-12	Local Cryo	Local Cryo	Local Cryo	Local Cryo	1		Local Cryo		1		Local Cryo	1	Refrigerator	1		WP for discussio
10-12	Local ciyo	12	6,3	3,1			6,8				12		49			L
							-1-						GSI			ſ
TS-14	Common System			•				-				C	ontrols/Interfa	ces		Intension to take
													24	1		
													GSI			•
												a	uench Detect	ion		
													2,1			
													Magnet QC	4		
													7,2			
													GSI			
													Alignment	1		
													5,5			
													GSI			
													El. Power	1		
													16	1		
													GSI	1		


Indication to Take Over WPs


HOLTZ VISCHAFT

GSI

FAIR WPs

FAIR - an Unprecedented Research Facility

101

FAIR

Staging of the Project

Project Master Schedule

Adapted to Bung Civil Construction Schedule

Vorgangsname

MASTER SCHEDULE FAIR

Nr.

1

0

-10

10

- 10-

.

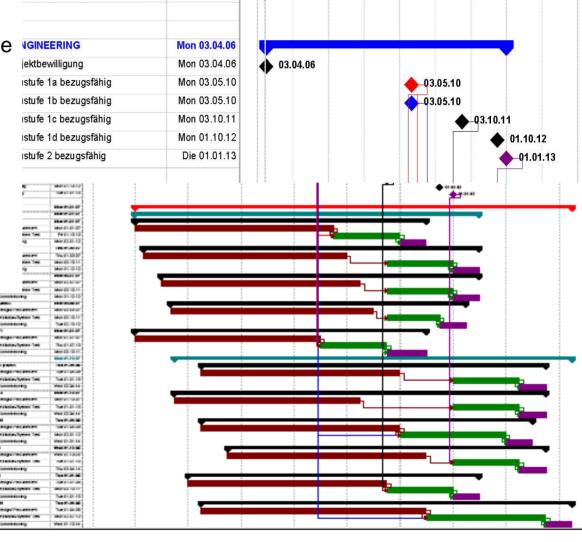
41

-B--

*

- 20

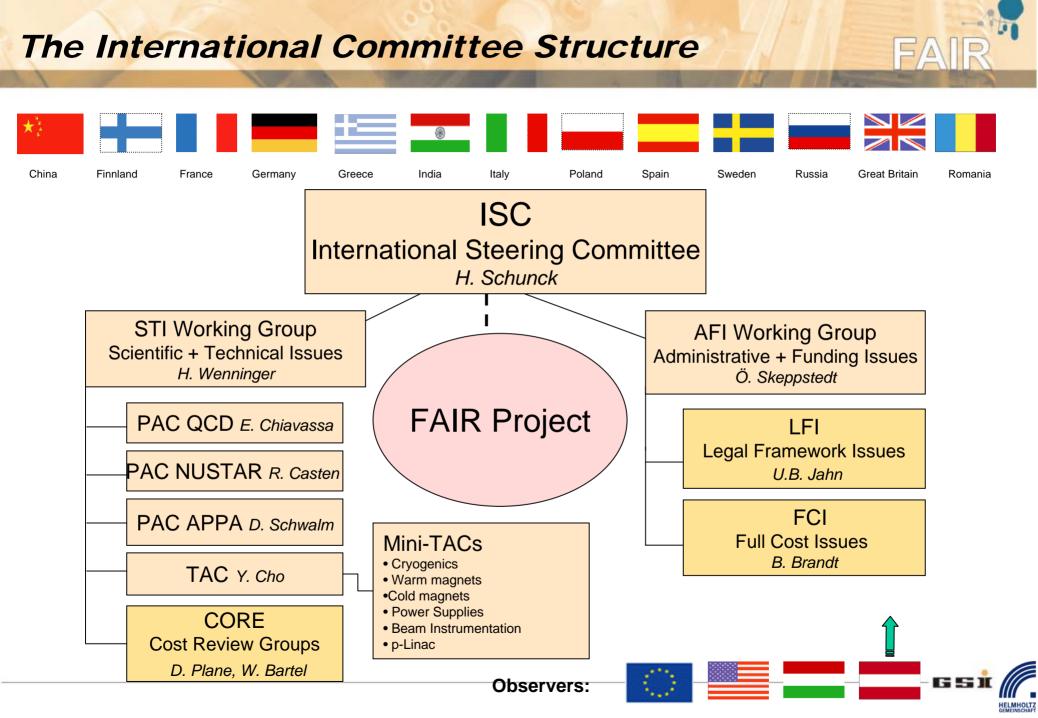
-


10

Critical Path:

Availability of buildings to start installations

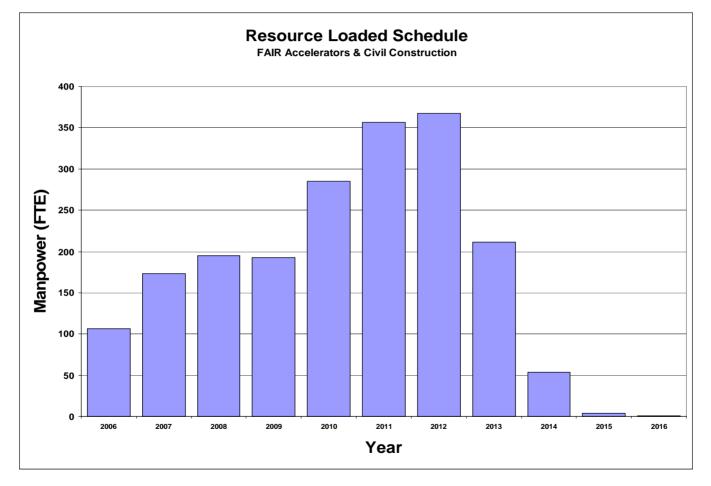
Actual planning allows for:


First experiments at sFRS 2011/2012 Project end 2014/2015

Anfang

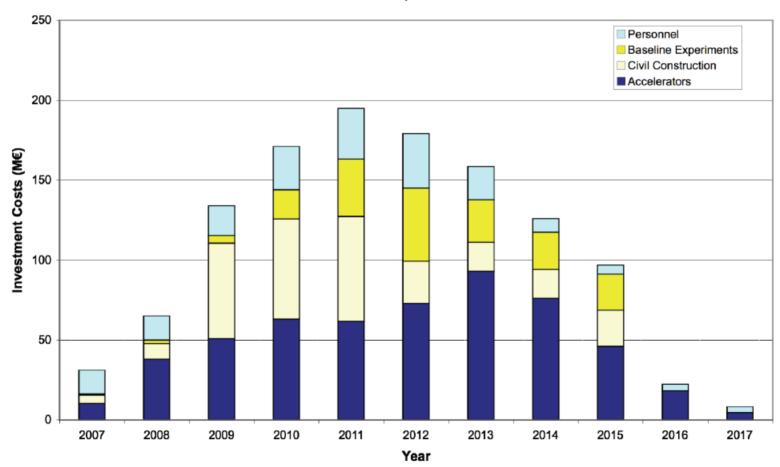
Die 14.03.06

5


FAIR Accelerator Costbook

Techn. systems

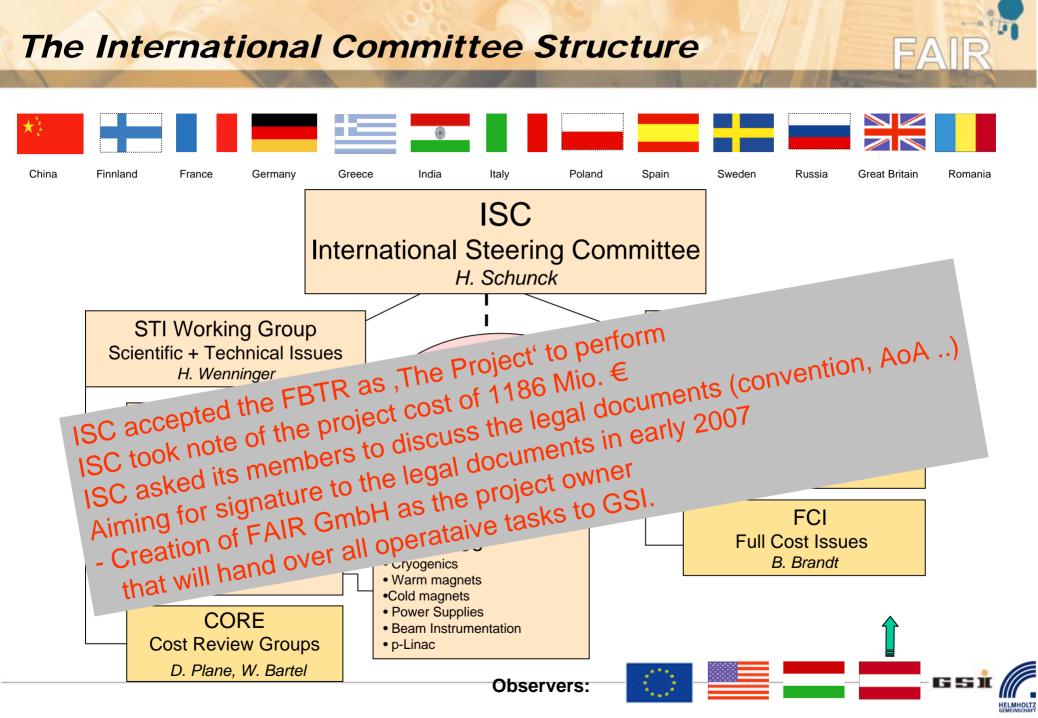
WBS-E2.1	UNILAC Upgrade		
		TS-2	Magnets
WBS-E2.2	SIS18 Upgrade	TS-3	Power Supplies
WBS-E2.3	HEBT		
WBS-E2.4	Super FRS	TS-4	RF Systems
-		TS-5	Injection / Extraction
WBS-E2.5	CR	TS-6	Beam Diagnostics
WBS-E2.6	NESR		-
WBS-E2.7	p-LINAC	TS-7	Vacuum
WD3-L2.7	p-LINAG	TS-8	Particle Sources
WBS-E2.8	SIS100	TS-9	Electron Cooling
WBS-E2.9	pBar TARGET	10-9	Electron cooling
WBS-E2.10	RESR	TS-10	Stochastic Cooling
WD3-E2.10	RESR	TS-11	Special Installations
WBS-E2.11	HESR	TS-12	
WBS-E2.12	SIS300	13-12	Local Cryogenics
	ED.		
WBS-E2.13	ER	TS-14	Common Systems
WBS-E2.14	Common Systems		-



FAIR Accelerators and Civil Construction: 2400 man-years in total incl. FAIR GmbH

D. Krämer - Tech. Discussions GB, Oct. 11th, 2006

Annual incidences of expenditure for construction



FAIR Baseline Technical Report Table of Contents

Volume 1	Executive Summary					
Volume 2	Accelerator and Scientific Infrastructure					
Volume 3A	Experiment Proposals on QCD Physics 3.1 CBM					
Volume 3B	Experiment Propo 3.2 PANDA 3.3 PAX 3.4 ASSIA	osals on QCD Physics				
Volume 4	Experiment Propo 4.1 LEB-SuperFRS 4.3 MATS 4.5 R3B 4.7 AIC 4.9 EXL	 A.2 HISPEC/DESPEC 4.4 LASPEC 4.6 ILIMA 4.8 ELISe 				
Volume 5	Experiment Prope 5.1 SPARC 5.3 WDM 5.5 BIOMAT	osals on Atomic, Plasma & Applied Physics (APPA) 5.2 HEDgeHOB 5.4 FLAIR				

 Volume 6
 Civil Construction and Safety

Core Groupe "A" for Accelerators and Infrastructure

2

•David Plane, <u>chair</u> (ex CERN)

- •Y. Cho, Argonne (ex officio, TAC chair)
- •K. Blasche (ex GSI)
- •T. Taylor (ex CERN)
- •E. Weisse (ex CERN)
- •G. Stevenson (ex CERN)
- •W. Erdt (ex CERN)
- •P. Strubin (CERN)
- •I. Gardner (CCLRC)
- •L. Miralles (Synchr. Lab Spain)
- •D. Krämer (BESSY II)

experiments, beam lines, project management accelerators, costing accelerators magnets, sc magnets accelerator systems, safety, infrastructure safety, infrastructure cryo systems vacuum accelerators systems accelerators, ATLAS, engineering Accelerators, infrastructure

•First Meeting on July 26/27th, 2005, last meeting 8-10th November 2005

