The Compressed Baryonic Matter Experiment at FAIR

FAIR community meeting, Daresbury Laboratory, 24-25th January, 2006

Probing strongly interacting matter

The phase diagram of strongly interacting matter

Mapping the QCD phase diagram with heavy-ion collisions

U+U 23 GeV/A

t=-17.14 fm/c

UrQMD Frankfurt/M

Diagnostic probes

U+U 23 AGeV

Compressed Baryonic Matter: physics topics and observables

Probing the equation-of-state at high ρ_B Observables: collective flow of hadrons, particle production at threshold energies (open charm)

Search for the deconfinement phase transition at high ρ_{B} > enhanced strangeness production ?

Observables: K, Λ , Σ , Ξ , Ω

> anomalous charmonium suppression ? Observables: charmonium $(J/\psi, \psi')$, open charm (D^0, D^{\pm})

Search for the critical endpoint Observable: event-by-event fluctuations (K/ π , p_T, ...)

Search for chiral symmetry restoration at high ρ_B > in-medium modifications of hadrons Observables: $\rho, \omega, \phi \rightarrow e^+e^-$, open charm,

Experimental program of CBM:

Observables:

Penetrating probes: ρ , ω , ϕ , J/ψ (vector mesons) Strangeness: K, Λ , Σ , Ξ , Ω , Open charm: D°, D[±], D_s, Λ_{c} , global features: collective flow, fluctuations, ..., exotica

Systematic investigations: A+A collisions from 8 to 45 (35) AGeV, Z/A=0.5 (0.4) p+A collisions from 8 to 90 GeV p+p collisions from 8 to 90 GeV

Beam energies up to 8 AGeV: HADES

Detector requirements Large geometrical acceptance good hadron and electron identification excellent vertex resolution high rate capability of detectors, FEE and DAQ

Large integrated luminosity: High beam intensity and duty cycle, Available for several month per year

Data at FAIR energies : pion and kaon production in central Au+Au and Pb+Pb collisions

Data at FAIR energies: dynamical fluctuations of particle ratios measured event-by event

 K/π: increase towards low energies (20 AGeV), not reproduced by UrQMD transport code
 p/π: correlation due to resonance decays

Theoretical prediction of meson production in central Au+Au collisions

D-meson measurements

Some hadronic decay modes

- $\begin{array}{l} \mathsf{D}^{\pm} \, (\mathsf{c}\tau \, = \, 317 \ \mu \text{m}) \\ \mathsf{D}^{+} \rightarrow \, \mathsf{K}^{0} \pi^{+} \, (2.9 \pm 0.26 \%) \\ \mathsf{D}^{+} \rightarrow \, \mathsf{K}^{-} \pi^{+} \pi^{+} \, \, (9 \pm 0.6 \%) \end{array}$
- $\begin{array}{l} \mathsf{D}^{0} \mbox{ (c}\tau = 124.4 \ \mu \text{m}) \mbox{:} \\ \mathsf{D}^{0} \rightarrow \mbox{ K}^{\text{-}}\pi^{\text{+}} \ \mbox{(3.9 \pm 0.09\%)} \\ \mathsf{D}^{0} \rightarrow \mbox{ K}^{\text{-}}\pi^{\text{+}} \ \pi^{\text{+}} \ \pi^{\text{-}} \ \mbox{(7.6 \pm 0.4\%)} \end{array}$

J/ψ measurements at FAIR energies

central collisions 25 AGeV Au+Au 158 AGeV Pb+Pb

J/ ψ multiplicity	1.5·10 ⁻⁵	1·10 ⁻³
beam intensity	1·10 ⁹ /s	2·10 ⁷ /s
interactions	1·10 ⁷ /s (1%)	2·10 ⁶ /s (10%)
central collisions	1·10 ⁶ /s	2·10 ⁵ /s
J/ψ rate	15/s	200/s
$6\% J/\psi \rightarrow e^+e^-(\mu^+\mu^-)$	0.9/s	12/s
spill fraction	0.8	0.25
acceptance	0.25	≈ 0.1
J/w measured	0.17/s	≈ 0.3/s
	$\approx 1.10^{5}$ /week	\approx 1.8·10 ⁵ /week

Looking into the fireball ...

... using penetrating probes:

short-lived vector mesons decaying into electron-positron pairs

Dilepton Sources in Heavy-Ion Collisions

no $\rho, \omega, \phi \rightarrow e^+e^-$ measurement between 2 and 40 AGeV no $J/\psi \rightarrow e^+e^- (\mu^+\mu^-)$ measurement below 160 AGeV no D-meson measurement below RHIC energies

Experimental challenges

Central Au+Au collision at 25 AGeV: URQMD + GEANT4

160 p 400 π⁻ 400 π⁺ 44 K⁺ 13 K⁻

- 10⁷ Au+Au reactions/sec
 (beam intensities up to 10⁹ ions/sec, 1 % interaction target)
- > determination of (displaced) vertices with high resolution (\approx 50 μ m)
- identification of electrons and hadrons

- > Radiation hard Silicon (pixel/strip) Tracking System in a magnetic dipole field
- Electron detectors: RICH & TRD & ECAL: pion suppression better 10⁴
- Hadron identification: TOF-RPC
- > Measurement of photons, π , η , and muons: electromagn. calorimeter (ECAL)
- > High speed data acquisition and trigger system

Hyperon detection with STS without p, K, π identification

efficiency 15.8%

6.7%

D⁺ mesons from Au+Au collisions at 25 AGeV

Track reconstruction: realistic magnetic field, 7 pixel detectors (no strips yet), no particle ID required

D⁺ production cross section from HSD 25 AGeV Au+Au from UrQMD

81000 D⁺ mesons registered in 10^{12} min. bias Au+Au collisions at 25 AGeV (\rightarrow 1 - 100 days depending on read-out speed of Silicon vertex detector)

Electron-positron pairs from Au+Au collisions at 25 AGeV

Simulations without track reconstruction & electron identification Experimental challenge: branching ratios ~ $10^{-5}-10^{-4}$ for $\rho, \omega, \phi \rightarrow e^+e^-$

Alternative option: μ ID system with absorber

C/Fe absorbers + detector layers

Simulations Au+Au 25 AGeV:

- track reconstruction from hits in STS and muon chambers
- > muon ID: tracks from STS to muon chamber behind absorber
- vector meson multiplicities from HSD transport code

Experimental requirements and ongoing R&D

Silicon Pixel Detector:

- low materal budget: d < 200 μ m
- single hit resolution < 20 µm
- radiation hardness (dose 10¹⁵ n_{eq}/cm²)
- fast read out

Si-Strip detectors:

- pitch 50 µm
- thickness 200 µm
- double sided, stereo angle 15°
- Area 2 m²

Ring Imaging Cherenkov Detector:

- e/π discrimination > 100
- hadron blind up to about 6 GeV/c
- low mass mirrors
- fast UV detector

Muon detection system:

- fast gas chambers (GEM)
- high granularity

Transition Radiation Detector:

- e/π discrimination of > 100 (p > 1 GeV/c)
- High rate capability up to 100 kHz/cm²
- Position resolution of about 200 µm
- Large area (≈ 450 650 m², 9 12 layers)

Resistive Plate Chamber (ToF-RPC):

- Time resolution $\leq 80 \text{ ps}$
- High rate capability up to 25 kHz/cm²
- Efficiency > 95 %
- Area 100 m²

Electromagnetic Calorimeter:

- energy resolution of 5%/√E(GeV)
- high rate capability up to 15 kHz
- e/π discrimination of 50-200
- Area 100 m²

FEE and DAQ:

self triggered digitization, dead time free

Compressed Baryonic Matter Experiment

http://www.gsi.de/fair/experiments/CBM

Next steps:

- > CBM Technical Proposal 2007
- CBM Physics Book
 Workshop at ECT* in Trento
 May 29 June 2, 2006
 "The physics of high baryon density"

CBM Collaboration : 41 institutions, > 350 Members

<u>Croatia</u>: RBI, Zagreb

<u>China:</u>

Wuhan Univ. Hefei Univ.

<u>Cyprus:</u> Nikosia Univ.

<u>Czech Republic:</u> CAS, Rez Techn. Univ. Prague

France: IReS Strasbourg

<u>Hungaria:</u>

KFKI Budapest Eötvös Univ. Budapest

<u>India:</u> VECC Kolkata

<u>Korea:</u>

Korea Univ. Seoul Pusan National Univ.

<u>Norway:</u> Univ. Bergen

Germany:

Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Kaiserslautern Univ. Mannheim Univ. Münster FZ Rossendorf GSI Darmstadt

Poland:

Krakow Univ. Warsaw Univ. Silesia Univ. Katowice

Portugal: LIP Coimbra

Romania: NIPNE Bucharest

<u>Russia:</u>

CKBM, St. Petersburg **IHEP** Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna **MEPHI Moscow** Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U.

Ukraine:

Shevshenko Univ., Kiev