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Is the future of large accelerators
limited?

CERN and GSI have been at the vanguard of
nuclear and particle physics for > 50 years.

However their size is becoming a limiting factor

Many scientists are looking for more compact
accelerators.

Perhaps laser accelerators is a way forward

How big are these conventional
accelerators???
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The History of
High Intensity Lasers



Laser Induced Particle Acceleration
and Applications

e Terawatt= 1012W

 Total Electrical Power Generated In the
USA = 102w

e Petawatt =10°W

 There are 15 Petawatt and proposed
Petawatt lasers in the world

e Exawatt=101W
e Zettawatt=104'W



Nonlinear QED: E- e\, =2mc’
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What happens as the laser intensity is increased?
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VULCAN petawatt laser (RAL)

Energy 600 J (on target)
Repetition 1 hour
Wavelength 1.05 um

Pulse duration 0.6 ps

Intensity ~6x1020 Wcem-2
Maximum pulses

per week ~25



Petawatt with Extensive Nuclear
Shielding



|_aser Nuclear Phenomena

PET isotope production

Laser induced nuclear transmutation
studies

aser produced heavy Ion reactions
Spallation studies

New experiments including Counter-
propagating beam experiments for
positron and muon production



Proton Production




Proton Production

* For metals the protons come from
hydrogen in water or contaminants on
surface or trapped In the solid (H,0, 100x
more than CH)

e The surface contamination Is due to poor
vacuum conditions in the target chamber

* \We think the proton beams are produced
thus:
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How to measure proton
energy spectra using a
stack of thin copper foils
and activity from a (p,n)
reaction In copper to

produce °3Zn (38 min
half life)



CCD camera
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Proton Spectra from 100TW
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Proton acceleration on Vulcan petawatt
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Proton beam quality measurements
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High resolution electron spectroscopy using
the ASTRA laser system

high intensity
laser beam

_ electromagnet
collimator

supersonic gas jet

elactron sensitive
image plate

E ~ 350 mJ,

pulse duration ~ 40 fsec
Focal spot ~ 25 um
Intensity ~ 2 x 1018 W/cm?2
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Electron Acceleration Experiment on Vulcan Petawatt
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Krushelnick et al
(1.C.) with gas targets
have measured
electrons with energy
240 MeV on
VULCAN

Malka et al on the
table top laser LOA
have measured 200
MeV electrons at
similar intensities



Mono-energetic spectra can be observed
at higher power (AE/E = 6 %)
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Properties of a Petawatt Laser at
104'Wcem-2

Electrons energies up to 500 MeV now
mono-energetic

Protons up to 60 MeV with mono-
energetic protons now possible

Heavy ions with energies up to 10 MeV/
nucleon

Magnetic Fields up to 600 MG
Photon Pressures up to GBars



Experiments which can be
carried out at GSI

Synergies between Intense lon (SIS
-200 and Laser Beams(Phelix)



The Physics of Dense Plasmas

 This Is the physics of planet interiors and
stellar atmospheres

 Visible and UV light cannot be generated
through these plasmas

e Short pulses of X rays ~10keV are needed
for this especially if high temporal
resolution is required



Phelix as a unigue Diagnostic to backlight
plasmas generated by SIS 200
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Proton Radiography as an extension of X-
rays for investigating matter under
extreme conditions

SIS generated Plasma

p

Phelix

Proton or
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photon detector P



The Combined Capability of
Phelix and SIS 200

Light or proton propagation in dense
plasmas

Equations of state experiments
Supernova shock wave experiments

Phelix providing shock wave and SI1S-200
Investigating the response of the shock
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