

Liquid Metal Technology for High Power Targets

FAIR Community meeting

26th January 2006

Introduction

- Design outline of liquid lithium production target for Super-FRS at FAIR
- Design considerations
- Current projects exploring liquid metal technology
- Properties of liquid metals
- Proposed future work

Design outline for Super-FRS production Liquid Metal Target

Beam parameters

- Up to $10^{12} {}^{238}U$ ions per pulse at 1GeV/u
- Pulse length = 50ns

Problem

- High Instantaneous power deposited in fast extracted beams (equivalent to 200 GW)
- Target could be destroyed by single pulse

Possible Solution

- Windowless
- Liquid lithium target

Initial Calculations for fast extraction

Using BIG-2 (2D hydrodynamics code)

Beam spot size $\sigma_x = \sigma_y = 1$ mm (highest power density case)

- Max Temp = 13,000K
- Max Pressure = 14GPa
- Velocity = 10km/s !!
- Explosive dispersal

Enlarged beam spot – 48mm²

- Only small change to density
- Flow should not be destroyed
- Surface may splash but cannot confirm with this model

Why Liquid lithium

- Low atomic mass → Target/nuclear considerations
- Low density and viscosity → Easy to pump
- Good working Temperature range 1161° Melting point (181°C) Boiling point (1342°C)
- Low vapour pressure (10⁻⁷Pa at 200°C)
- Low Prandtl Number \rightarrow good heat transfer
- High heat capacity (4.4 kJ/kg K)

Considerations for liquid metal targets

- Shock waves and dispersal of jet
- Obtaining reliable material properties and equation of state (EOS)
- Corrosion and erosion caused by liquid metals
- Purification and Chemical control
- Safety (Radiological & Chemical)

Parameters of Target utilising Liquid Metals

	Target Material	Beam	Peak power density (J/cc/pulse) Average power deposited	Pulse length
GSI/Fair	Li	Heavy ions	30,000 (0.012 MW)	5x10 ⁻⁹ s
Nufact target	Hg	8 -50 GeV Protons	300 (0.4 MW)	Few x10 ⁻⁹ s
ESS	Hg	1.3 GeV Protons	20 (2.8 MW)	1.4x10 ⁻⁶ s
SNS	Hg	1 GeV Protons	13 ? (1.4 MW)	0.7x10 ⁻⁶ s
RIA	Li	400 MeV Uranium ions	4 MW/cm ³ (0.12 MW)	CW
IFMIF	Li	40 MeV D ⁺	0.1 MW/cm ³ (10 MW)	CW

Mike Fitton

Engineering Analysis Group

ESS – European Spallation Source

target beam window
target shell
lower flow guide with He-injector system
side baffle plate
return hull beam window, double shell
return hull shell with cooling system
target unit main flange
return hull connector part
return hull coolant supply
Hg-inlet transition manifold
He-supply
Hg-He-mixture outlet

ESS Technical report – Volume III, chapter 4

SNS – Spallation Neutron Source

www.sns.gov -Oak Ridge, Tennessee

IFMIF – International Fusion Materials Irradiation Facility

Japan Atomic Energy Research Institute

RIA – Rare Isotope Accelerator

Proposed Design

- Windowless Lithium Target
- Lithium flow up to 20m/s
- •Target thickness 20-30mm
- Uranium ion beam

However

- Beam is NOT pulsed
- Power density much lower than proposed at GSI/FAIR

Mike Fitton Engineering Analysis Group

Argonne National Laboratory

RIA – Prototype experiments

- Test done with 1MeV electron beam 20kW
- Max power density was equivalent to a 200kW 400MeV uranium beam
- Operated stably and without excess vaporisation with flow rates as low as 1.8m/s

Muon Collider/Neutrino Factory

- Liquid Mercury jet target within solenoid magnet
 - Magnet is for particle capture but also has hydrodynamic effects

Magnetohydrodynamic (MHD) simulation of a Mercury jet

- MHD effects reduce velocity of shock
- Magnetic field results in compressive forces on free surface of jet

Roman Samulyak - BNL

Pulsed Proton Beam Experiments

MERIT – ISOLDE, CERN

- Splash velocities of up to 50m/s were recorded
- Splash velocity scales with power density
 - Proton Intensity
 - Spot size
- Larger dispersal if pulses separated by less than 3µs.

E951 - AGS, BNL

- Splash velocities of 5 50m/s recorded
- Single pulse equivalent to 1MW
- Dispersal scales with proton intensity
- Dispersal is not explosive

MYRRHA – ADS Research Reactor

<u>ADS – Accelerator Driven System</u>

- Non critical fission core
- Neutrons created by spallation at centre of core
- Neutrons then amplified by reactor
- Liquid metal used as coolant

Neutron Spallation Source

- 350MeV, 5mA, CW Proton Beam
- Windowless LBE spallation target

Properties of liquid metals

Topical Day: Heavy Liquid Metal Technology, November 8, 2005, SCK CEN, Mol, Belgium

Thermal conductivity of liquid lead

- Not all liquid metals are well characterised
- Large discrepancies exist for some materials
- Care must be taken with material properties used for analysis

Material Properties of Liquid Lithium

0.7 TOULOUKIAN et al. (5) SHPIL'RAIN and YAKIMOVICH (6) 0.6 DILLON et al. (7) DENSITY (Mg/m³) GOLTSOVA (8) ۵ MATERIALS HANDBOOK FOR FUSION ENERGY SYSTEMS (4) 0.5 0.4 0.3 200 400 600 0 800 1000 1200 1400 1600 1800 TEMPERATURE (K)

Comparison of experimental studies on the effect of temperature on the density – Oak Ridge National Laboratory 1988

Mike Fitton Engineering Analysis Group

ORNL-DWG 87-11843

ORNL-DWG 87-11844

Comparison of experimental studies on the effect of temperature on the specific heat of lithium – Oak Ridge National Laboratory 1988

ORNL~DWG 87-11845

Comparison of experimental studies on the effect of temperature on the viscosity of lithium – Oak Ridge National Laboratory 1988

Proposed future work

- Simulation of liquid lithium target to determine limiting factors of design is required.
 - Simulations should include
 - Free surfaces (predict ejection of Lithium)
 - Shock waves
 - 3D
 - An appropriate EOS model
- Experiments similar to RIA, but with pulsed beam could be useful for validation.