

http://www.gsi.de/sparc

Stored Particle Atomic Research Collaboration

SPARC

- 210 members, 23 countries
- Physics Program Highlights:
- •QED in strong fields
- •Dynamics in energetic (→relativistic) Collisions
- •Slow HC lons far from Equilibrium hitting Clusters, Nano-Capillaries...

Exploit range of velocities

Electromagnetic Phenomena in Extreme & Unusual Conditions

High- Z

High- γ

Extreme Electromagnetic Fields

at SIS 100/300

relativistic ions $\gamma \rightarrow 30$, Z and q up to 92

at NESR (800-3MeV/u) Cooled highly charged heavy ions probed with photons, electrons, and atoms.

 at LSR (20-0.2 MeV/u) Slow highly charged heavy ions colliding with electrons, and atoms.
 at HITRAP (500-0keV/u) Cooled highly charged ions at rest

1s Lamb Shift

Laser at SIS100/300

Quality Retarios

Attosecond Pump-Probe

New Experimental Storage Ring (NESR)

Dielectronic Recombination (DR)

Measure resonance profiles due to dielectronic recombination to a level where QED effects manifest in the observed line-shapes, thereby providing significant new tests of dynamical QED.

Separate cooler and target provides energy range to access all dielectronic recombination resonance systems.

Overlapping Resonances in the KLn-DR of U⁹¹⁺ (dynamical QED)

A. V. Nefiodov, L. N. Labzowsky, D. L. Moores, Phys. Rev. A **60** (1999), 2069. 1/25/2006

Explore the Nucleus

Experimental data for DR of Li-like ²³⁸U⁸⁹⁺ and calculated isotopic shift for ²³³U⁸⁹⁺ (volume shift only).

The Heidelberg (TSR) Ultracold Electron Target

3rd generation electron target (dedicated and optimized with respect to experiments) Adiabatic expansion / adiabatic acceleration of electrons Photocathode option for the production of initially cold electrons

The New Experimental Storage Ring NESR

In-Ring Spectrometers The "Cloud Chamber" of Atomic Physics

Supersonic Jet Reaction-Microscope COLTRIMS X-Ray/visible **Spectroscopy**

Electron Spectroscopy

12012000

Recoil Ion Momentum Spectroscopy

Forward Emitted Electrons

New Instrumentation

Hard X-ray polarisation-sensitive detectors
Microcalorimeters for high resolution broad band detection
X-ray optics for efficient collection
Suite of spectrometers
etc.

Facility for Low-energy Antiproton and Ion Research (FLAIR)

Low-Energy Storage Ring

The Low-Energy Storage Ring LSR

- LSR: A cooler storage ring: CRYRING
 - medium to low energies
 - in-ring experiments: gas target, "reaction microscope"
 - ns beam pulses for ionization experiments

Ultra-Low Energy Storage Ring

The Electrostatic Storage Ring USR for Antiprotons and Ions at Ultra-Low Energy

USR: A novel low-energy electrostatic storage ring

low to ultra-low energiesin-ring experiments:

•gas target

"reaction microscope"
excellent beam quality
high luminosity for in-ring experiments

HI-TRAP

Precision Experiments in Penning Traps g-Factor of bound electron in highly charged ions @HITRAP

High-Precision Ion Trap Techniques:

Single highly charged ion stored in Penning trap at T = 4 K
 Measurement of the *ion cyclotron frequency* and of *Larmor precession frequency* of the bound electron with an accuracy of 7 x 10⁻¹⁰

Bound-state QED and atomic-structure investigations: g-Factor of the bound electron in hydrogen-like ions up to U⁹¹⁺

- Fundamental constants (α, m_e)
- Nuclear moments, diamagnetic shielding, charge radii
- Determination of atomic binding energies via ion

cyclotron frequency measurements in different

charge state

J. Kluge, W. Quint, G. Werth et al. 1/25/2006

Timeline and Milestones

- •2006 September: SPARC open session @ HCI-2006 Belfast
- •2007 HITRAP in operation at ESR
- 2008 Jet-target for NESR at ESR in operation
- 2009/10 Electron target/cooler ready for NESR
- 2010 Transfer of CRYRING
- 2011 High-energy AP cave: commissioning
- 2011 Installation of internal target at NESR, Commissioning of NESR
- 2011 Commissioning of LSR
- 2012 Commissioning of low-energy cave, Experiments at NESR
- 2012/13 HITRAP at NESR 1/25/2006

SPARC Stored Particle Atomic Research Collaboration

your time and attention

The SPARC-Collaboration: http://www.gsi.de/sparc

Electrons of Heavy Highly-Charged Ions as a Probe for the Nucleus

in heavy few-electron systems :

significant overlap of s- and $p_{1/2}$ -electronic wavefunction with the atomic nucleus

⇒ bound electrons
 are a sensitive probe
 of the nucleus
 (charge distribution,
 nuclear spin)

New Experimental Possibilities for DR at Super-FRS/NESR

