

EXotic nuclei studied in Light-ion induced reactions at the NESR storage ring

A unique opportunity at the future FAIR facility

FAIR – UK Meeting, Daresbury, January 25-26, 2006

Marielle Chartier

The Nuclear Chart: Theoretical Perspective

Tackling the nuclear many-body problem...

Neutron Number

Experimental data and new phenomena challenge our theoretical descriptions of the nucleus

EXotic nuclei studied in Light-ion induced reactions at the NESR storage ring

Key physics issues

- Matter distributions (halo, skin...)
- Single-particle structure evolution (magic numbers, shell gaps, spectroscopic factors)
- NN correlations, clusters
- New collective modes (different deformations for p and n, giant resonances strengths)
- Astrophysical r and rp processes (GT, capture...)
- In-medium interactions in asymmetric and low-density matter

Light-ion scattering

Elastic (p,p), (α,α) ...

Inelastic (p,p'), (α , α ') ...

Charge exchange (p,n), $(^{3}He,t)$, $(d,^{2}He)$...

Quasi-free (p,pn), (p,2p), (p,p α) ...

Transfer (p,t), (p,³He), (p,d), (d,p) ...

~ 15 ... ~ 740 MeV/nucleon

Theory: P.-G. Reinhard

Ex: Sn isotopes

At the nuclear surface: almost pure neutron matter

- ⇒ probe isospin dependence of effective in-medium interactions
- ⇒ sensitivity to the asymmetry energy (volume and surface term)

Investigation of the Giant Monopole Resonance In Doubly Magic Nuclei by Inelastic α-Scattering

- ♦ GMR gives access to nuclear compressibility $K_{nm} (Z,N) ~ \rho_0^2 d^2(E/A) / d\rho^2 | \rho_0$ ⇔ Key parameter of EOS
- Investigation of isotopic chains arround ¹³²Sn,
 ⁵⁶Ni, ... with high δ = (N-Z)/A
 ⇒ Disentangle different contributions to
 K_A = K_{vol} + K_{surf} A^{-1/3} + K_{sym} ((N-Z)/A)² + ...
- Investigation of new collective modes
 - ⇒ Breathing mode of neutron skin

Experimental conditions to investigate the GMR
⇒ (α,α') inelastic scattering
at very low momentum transfer

isoscalar

Feasibility Study with EXL

Elastic proton scattering ¹³²Sn (Matter Distribution)

Skin and haloes in heavy neutron-rich nuclei, nuclear potential parameters

Inelastic alpha scattering on Sn isotopes (Giant Monopole Resonance)

Collective modes in asymmetric nuclei, nuclear matter compressibility

NESR with a luminosity of 10²⁸ cm⁻² s⁻¹)

Kinematical Conditions for Light-Ion Induced Direct Reactions in Inverse Kinematics

The EXL domain @ low-momentum transfer is essential for elastic & inelastic scattering and charge-exchange reactions

Required beam energies

E ~ 200 – 740 MeV/nucleon (except for transfer reactions)

Required targets

Light nuclei (e.g. ^{1,2}H, ^{3,4}He)

 Most important information in the region of low-momentum transfer

detect recoil particles of low energies

need thin targets for sufficient angular and energy resolution

Light-Ion Scattering with Radioactive Ion Beams

Rather limited applications to date...

The EXL experiment, a huge leap forward:

- Heavy-ion storage ring
- Internal gas/liquid jet target
- Inverse kinematics
- Measurements at <u>low energy/momentum</u> transfer
 - \rightarrow need very thin (windowless) target
 - \rightarrow need to regain luminosity

from beam accumulation

from beam recirculation (NESR ~ $10^6 \, \text{s}^{-1}$)

→ need high resolution (recoil kinematics) regain beam quality by electron cooling

Physics overlap with R³B at the external target and with ELISe at the e-A collider

➔ Complementarity

Predicted Luminosities @ the NESR Storage Ring

Assumptions:

RIB @ 740 MeV/nucleon (6x10¹¹ ions/spill)

H gas-jet target (10¹⁴ atoms/cm²)

Cycle time 1.54 s

Including:

- Production rates
- Transmission through Super-FRS and into Collector Ring
- Losses due to nuclear decay (half-life) and electron capture in target or electron cooler

Options to be explored: Deceleration, Multi-charge state operation *(increase luminosity)*?

External Target versus Internal Target

Advantages / Disadvantages of Storage Rings for Direct Reactions in Inverse Kinematics

Gain of luminosity

Continuous beam accumulation and recirculation

High resolution

Beam cooling, thin target

Low background

Pure windowless ^{1,2}H, ^{3,4}He targets

Separation of isomers

But:

Lifetime limit for very short-lived exotic nuclei (> 500 ms)

Active Target (low rate capabilities ⇒ very exotic, short-lived nuclei)

Large-acceptance measurement

NUSTAR Experiments with Stored Radioactive Beams @ FAIR

The EXL Experimental Set-up: Concept and Design Goals

Design goals

- Universality: applicable to a wide class of reactions
- High energy and angular resolution
- Fully exclusive kinematical measurements
- High luminosity (> 10²⁸ cm⁻² s⁻¹)
- Large solid angle acceptance
- UHV compatibility (in part)
- ✓ Internal jet target (>10¹⁴ cm⁻²)
- ✓ Detection systems for:
 - Target recoils and gammas $(p,\alpha,n,\gamma...)$
 - Forward ejectiles (p,n,γ)
 - Heavy fragments

Big R&D effort needed!

The EXL Recoil and Gamma Array

Si DSSD $\Rightarrow \Delta E, x, y$ $300 \ \mu m$ thick, spatial resolution better than 500 μm in x and y, $\Delta E = 30 \ \text{keV} (FWHM)$ Thin Si DSSD \Rightarrow tracking <100 μm thick, spatial resolution better than 100 μm in x and y, $\Delta E = 30 \ \text{keV} (FWHM)$ Si(Li) $\Rightarrow E$ 9 mm thick, large area 100 x 100 mm², $\Delta E = 50 \ \text{keV} (FWHM)$

Csl crystals \Rightarrow E, γ High efficiency, high resolution,20 cm thick

Synergy with R³B & NUSTAR.

The EXL Recoil and Gamma Array

The EXL Recoil and Gamma Array

Modular Design

— 10 cm

Calorimeter

Forward angles (10° – 90°) covered by 1304 single crystals (2 different types)

Angular resolution: $\Delta \theta = 1.2^{\circ}$ $\Delta \Phi = 8.8^{\circ}$

Backward angles (90° – 120°) covered by 726 single crystals (5 different types)

Angular resolution: $\Delta \theta = 2.3^{\circ}$ $\Delta \Phi = 7.8^{\circ}$

transfer reactions

Synergy with R³B & NUSTAR.

EXL Electronics R&D

- Large number of channels
- Large dynamic range, low thresholds
- UHV capabilities, baking, low power dissipation
- Space constraints

Detectors-560000 channels DSSD and SiLi ASIC cards- approx 17500 ASICs on 1750 cards (32 channels/ASIC)

ADC cards- 1750 ADCs on 219 cards (320 channels/ADC)

Synergy with NUSTAR.

The EXL Forward Ejectile Detector

Kinematically complete measurements:

- detection of forward light particles emitted from the projectile (momenta measured)
- excitation energy of projectile residue, momentum (angular) correlations

Synergy with R³B.

The EXL In-Ring Heavy-Ion Spectrometer

- Ion-optical mode for NESR as fragment spectrometer
- ***** 3 heavy-ion detector stations:
- in front of first dipole magnet for 'reaction tagging' (main mode)
- inserted into dipole section for 'tracking' of fragments
- inserted into quadrupole section for 'imaging' properties of magnetic spectrometer (limited acceptance)

Synergy with ELISe and AIC.

Test Experiments at the ESR

350 MeV/nucleon ¹³⁶Xe beam H₂ gas-jet target Luminosity 10²⁷ s⁻¹cm⁻²

Scintillator array for the detection of fast ejectiles

UHV capable Si-strip detector for recoil protons

- Active area: 40×40 mm²
 - Thickness: 1 mm
 - 40 Strips (Pitch: 1 mm) connected for read-out in groups of 8, each one with two output pins
 - Energy resolution 35 \pm 5 keV for $\alpha\text{-particles}$ with E = 5.5 MeV

Some Exciting Challenges Today...

Recoil detector:

- High resolution: $\Delta E \sim 50 \text{ keV}$, $\Delta \vartheta \sim 1 \text{ mrad}$
- Low thresholds
- UHV compatible (in part)

Target:

- Cluster jet density and extension ($\leq 1 \text{ mm}$)
- Alternative targets (pellet; fibre; He superfluid jet; polarized) ?

Ion-optical mode for NESR as fragment spectrometer

Options to be explored:

- Deceleration down to ~ 15 A.MeV ?
- Multi-charge state operation ?

For Some Exciting Physics Tomorrow!

The EXL Collaboration

Univ. São Paulo

TRIUMF Vancouver

IPN Orsay

GSI Darmstadt, TU Darmstadt, Univ. Frankfurt, FZ Jülich, Univ. Mainz, Univ. Munich

INR Debrecen

κΦ)

SINP Kolkata, BARC Mumbai

Univ. Tehran

INFN/Univ. Milano

Spokesperson: M. Chartier (Liverpool) Deputy: P. Egelhof (GSI) 15 countries, 32 institutes, ~ 130 participants

Univ. Liverpool, Univ. Surrey

