Time-Over-Threshold Logic for the AGATA Digitizer

lan Brawn, 1 July 2010.

1 Overview

The logic described in this document has been developed to add functionality to the Core
firmware of the AGATA Digitizer. It enables the Digitizer to extract Time-Over-Threshold
(TOT) data from the pre-amplifiers by measuring the duration of the inhibit signal. The
extracted data are then transmitted to the Pre-Processor via the existing RocketlO links
(which normally carry ADC data).

As there is no spare capacity on the RocketlO links it is necessary to suppress the
transmission of some ADC data to allow the transmission of TOT data. Full details of the
protocol used are given in section 2.

The TOT logic comprises four logic blocks: the TDC, TOT Transmitter, TOT Receiver and Slow-
Control Interface. As shown in figure 1, all four of these blocks are instantiated in the
Digitizer firmware, and the TOT Receiver block should also be instantiated in the Pre-
Processor firmware. The functionality of these blocks is as follows.

e The TDC measures the duration for which the inhibit signal is asserted.

e The TOT Transmitter receives data from the TDC; it attaches a header to the data
and sends the resultant packet to the RocketlO transceiver for transmission across
the link to the Pre-Processors.

e The TOT Receiver receives data from the RocketlO transceiver. It extracts TOT data
from the data stream, presenting them on a dedicated output and masking them
from the downstream logic on the ADC-data path. The instance of the TOT Receiver
in the Digitizer firmware is for diagnostic purposes.

e The TOT Slow-Control Interface provides a slow-control interface to all other blocks
of TOT logic instantiated in the Digitizer firmware.

Note that, whereas there is one TDC per Digitizer, the TOT Transmitters and Receivers are
instantiated per channel (with the same TOT information being sent to both channels).
Furthermore, the Slow-Control Interface is composed of two blocks of identical logic, each
providing the interface for the TOT logic in one channel. Sections 3—4 of this document
describe all of these logic blocks in more detail.

e N \

Digitizer Pre-processor
o TOT || RocketlO p| RocketlO |] TOT
TDC TX MGT MGT RX
TOT
RX
core 1
o TOT || RocketlO RocketiO | | TOT
> MGT e RX
TOT SC
Corel
TOT SC
Core 2 core 2
- 2 L)

Figure 1. The organisation and modularity of the four blocks of TOT logic: the TDC,
the TOT Transmitter (TX), the TOT Receiver (RX) and the Slow-Control Interface
(TOT SC).

2 TOT Transmission Protocol

The protocol for transferring Time-Over-Threshold (TOT) data from the Digitizer to the Pre-
Processor is as follows.

As the full capacity of the Digitizer—Pre-processor links is used transmitting ADC, sync and
inhibit data, it is necessary to suppress some of this data to allow the transmission of TOT
data. This is done during the period of dead time that follows an active inhibit signal, the
cause and character of which is given below.

The dead time exists because the ADC values captured whilst inhibit is active are non-
physical. Downstream in the Pre-processor, in the Moving Window De-convolution (MWD)
algorithm, there is a pipeline memory that holds a history of ADC values. Only when all non-
physical ADC values have passed from this pipeline does this algorithm resume producing
valid results. There is thus a period of dead time following an active inhibit signal during
which no valid pulse information is extracted from the ADC data. During this period ADC
data can be suppressed and TOT data transmitted with minimal consequences. It is
desirable, however, that the transmission protocol doesn’t result in further non-physical
data being sent to the MWD algorithm, in order that the dead time not be lengthened.

The dead time is known to be at least one microsecond in duration, so it is a specification of
the TOT transmission that it should be completed within this period. (In practice the
transmission should normally be completed within 150 ns of the trailing edge of inhibit).

A TOT measurement is four bytes in size. Using the full data width available on the Rocket 10
link this requires two (RX/TX) clock cycles to transfer. The TOT measurement is therefore
transferred on two consecutive clock cycles, with the following bit order:

e TOT word 1: the first TOT word transmitted comprises the 16 least-significant bits of
the full, 32-bit TOT word. Bit 0 is the least significant.

e TOT word 2: the second TOT word transmitted comprises the 16 most significant bits
of the 32-bit TOT word. Bit 0 is the least significant (i.e., bit 0 of TOT word 2 equates
to bit 16 of the full, 32-bit TOT word).

The meaning of the bits within the full 32-bit TOT word is specific to the TDC implementation
and is described in section 5.

The TOT words are distinguished from normal data by a preceding K character, K28.0, a
control character from the 8B/10B encoding set used by the RocketlO link. The transfer of
each TOT measurement thus has the form shown in Figure 2. As the RocketlO data bus is
two bytes wide and K28.0 is only one byte wide, it is transmitted on both the upper and
lower bytes of the data bus simultaneously.

<1luyus

\ 4

inhibit _,
tedata [L1/1IX waso X oorwess Xrowes2 X/ /) [/
txcharisk / \

Figure 2. The format of the TOT packet as seen at the input to the RocketlO
transceiver on the Digitizer. Here, inhibit is the signal from the pre-amplifier, txdata is

the 16-bit data input to the transceiver, and txcharisk is the control signal to the
transceiver that flags K characters.

At the Pre-Processor, the signal rxcharisk from the RocketlO receiver, together with the
decoded K character on rxdata, is used to trigger both the capture of the subsequent two
words of TOT data and the masking of the TOT packet from the downstream data path
(including the MWD algorithm).

3 The TOT Transmitter Logic

The TOT transmitter logic, which is shown in figure 3, sits on the real-time data path in the
Digitizer firmware, directly upstream of the RocketlO MGT transceiver block. The
functionality is described below.

TOT_TX_Logic

[16

rkt_data 16

J

txdata

32
tot_data \ % TOT Header

32
test_data 16

tot_valid load_t_data
test_valid

test_mode
enable Control

pipeline

send t pkt

sync_accum t pkt charisk
sync_limit

t_pkt_charisk txcharisk
rst >
L
rkt_charisk ;I _)j

- J

Figure 3. A functional representation of the TOT Transmitter logic.

If the TOT Transmitter Logic is not enabled (i.e., enable is low), it passes the data on rkt_data
and rkt_charisk transparently to the outputs txdata and txcharisk respectively (with no
added latency).

If the TOT Transmitter Logic is enabled and not in test mode (i.e., enable is high and
test_mode is low), it responds to the assertion of tot_valid by generating a TOT packet of the
format shown in figure 2. The data sent in the TOT packet are those presented on tot_data
synchronously with the assertion of tot_valid. As described in section 2, the least-significant
byte of this word is transmitted first.

The TOT packet is transmitted on txdata and txcharisk, replacing the ADC data from rkt_data
and rkt_charisk that would otherwise be sent. There is minimum latency of one clock cycle
from the assertion of tot_valid to the appearance of the TOT header on txdata. However,
the latency for a particular instance may be longer as the transmission of TOT packets is
delayed if any of the following conditions are true:

1. asyncsignalis due in the next four clock cycles (as determined by the inputs
sync_accum and sync_limit);

2. rkt_data(15) (sync/inhibit) is currently asserted, or has been asserted in any of the
three previous clock cycles;

3. either of the rkt_charisk bits is asserted, or has been asserted in any of the three
previous clock cycles;

4. fewer than four clock cycles have elapsed since the TOT Transmitter output the last
word of the previous TOT packet.

Only when none of these conditions are true is a TOT packet sent. The delay thus added to
some TOT packets serves two purposes: firstly, it ensures that a sync signal is never replaced
by a TOT packet; secondly, it ensure that sync signals, K characters and TOT data are not
repeated in the data stream by the TOT Receiver logic (see section 4).

The TOT Transmitter asserts busy on receipt of an asserted tot_valid signal and only clears it
when the output of the TOT packet on to txdata and txcharisk has been completed. Whilst
busy is asserted the TOT Transmitter will not respond to any further assertions of tot_valid
(nor to any changes of tot_data, as the data to be transmitted are latched on receipt of the
initial tot_valid assertion).

If the TOT Transmitter Logic is enabled and in test mode (i.e., enable and test_mode are both
high), it responds to the inputs test_valid and test_data in exactly the same fashion as it
responds to tot_valid and tot_data in normal mode. That is, the data presented on test_data
are output onto txdata in a TOT packet with all the attendant functionality described above.

In test mode the TOT Transmitter will not respond to assertions of tot_valid and, conversely,
when not in test mode it will not respond to assertions of test_valid.

4 The TOT Receiver Logic

Figure 4 shows a functional representation of the logic required to receive the TOT
information in the Pre-Processor. It is intended that this logic should sit directly on the
output of the RocketlO MGT transceiver block and process the rxdata and rxcharisk signals
before they are received by any other logic in the Pre-Processor.

By default the TOT Receiver passes the data on inputs rxdata and rxcharisk to the
corresponding output ports transparently (with a fixed latency of one clock cycle). However,
if the logic is enabled and a TOT header (K28.0) is received, the logic performs the following
tasks:

e latches the two 16-bit words following the K character onto the 32-bit bus
TOT _data;

e asserts the signal TOT_flag for one clock cycle when there is new, valid data on
TOT data;

e masks the TOT header and the following two data words from the output bus
data_out by sending copies of the three consecutive data words that preceded the K
character;

e masks the active rxcharisk flag accompanying K28.0 from the signal charisk_out.

When the TOT Receiver logic is not enabled, all rxdata and rxcharisk data are passed through
the logic transparently, including any K characters and TOT data received.

TOT_RX_Logic

(N
RocketlO |,,4ata \
* data_out to downstream
>
logic
—Qm
msk d
16
1
(E‘ E
16
32
—| Decod - TOT dat
rxcharisk ecodaer [ms.ad
icharisk outy,
i TOT flag >
~ J
enable

Figure 4. The block TOT_RX_Logic shows a functional representation of the logic
required in the Pre-Processor to extract TOT data from the data stream received
from the RocketlO transceiver.

The resultant data on rxdata, data_out, TOT _data and TOT_flag are illustrated in Figure 5.
Note the latency from rxdata to data_out is one clock cycle.

rxdata < datan X data n+1 X data n+2 X K28.0 XTOT word 1XT0T word zX data n+6 X data n+7 ><
rxcharisk / \
data_out < datan-1 X datan X data n+1 X data n+2 X datan X data n+1 X data n+2 X datan+6 X

charisk_out

TOT_data previous TOT data X new TOT data

TOT_flag / \

Figure 5. The real-time input and output signals of the TOT receiver logic in the Pre-
processor.

Any K characters other than the nominated TOT header (K28.0) are passed transparently
though the TOT Receiver logic, together with the attendant rxcharisk flag. At present only
one other K character is used by the Digitizer—Pre-Processor link: K28.7 is used for data
alignment.

Note that the TOT receiver logic does nothing to prevent sync signals, K characters or
previous TOT data being captured and repeated by the TOT masking process. That is, it does
nothing to prevent these data occupying the positions data n to data n+2 in Figure 5. This is
not necessary as the TOT transmission logic in the Digitizer co-ordinates the transmission of
TOT packets and these special data to ensure that such situations do not arise (see

section 3).

In addition to being required in the Pre-Processor the TOT Receiver is instantiated in the
loopback RocketlO path of the Digitizer, for test and diagnostic purposes.

5 The TOT TDC

The implementation of the TDC is based on the interpolation method of time extraction as
described in the document TOT measurement, by Laurent Charles. The output of the TDC is
the 32-bit word, tot_data, which comprises the following three elements:

bits 0-15: T ourse: the number of whole clock cycles for which inhibit was asserted;

bits 16—23: Tie: the sub-clock-period adjustment ;

bits 24-31: T,.: a reference measurement of 1 clock cycle to calibrate the above.

Here the sub-clock measurement, Tiine, is @ signed number, with negative numbers given in
two’s complement. All of the other fields are unsigned, positive numbers.

The duration of the inhibit signal can be calculated from these measurements thus:
inhibit duration = (Tcourse + Ttine / Tref) X 5 NS

where 5 ns is the period of the TDC clock.

[)

inhibit]
Delay Chain 126

tot_valid
I_,z_; >
Inh Encoder Control >

126 g Proc —|

load controls
3
ot K Capture tot_data
— >
8 > Proc 6
140 8

’—/—v Ref Encoder
clk]
Delay Chain 140

- J
Figure 6. A block diagram of the TOT TDC.

Figure 6 shows a block diagram of the TOT TDC. The blocks can be grouped into four main
areas of functionality:

e the measurement of Tcourse (Counter),

e the determination of T, (Delay Chain 126, Inh Encoder, Capture Proc),

e the measurement of T ((Delay Chain 140, Ref Encoder, Capture Proc),

e the generation of control signals (Control Proc).

Each of these functions and the attendant areas of logic are described in the sections below.
These sections are followed by one describing the implementation of the delay chains.

5.1 The measurement of Teourse

This measurement is achieved using a simple counter, clocked at 200 MHz.

As indicated in figure 6, the version of the inhibit signal measured by the counter is not
sourced directly from the input port, but rather from the first (clocked) tap of Delay Chain
126. This is done to minimize the fan-out and capacitive load of the incoming inhibit signal,
with the aim of producing a more accurate measurement of T, (see below). This clocked
version of the inhibit signal is also passed through a number of further flip-flops on route to
the counter, in order to minimize problems of metastability.

5.2 The determination of Tine

The sub-clock adjustment, Ty, is calculated from two individual measurements:
Tfine = Trising - Tfalling

where Tiising IS the duration between the rising edge of inhibit and the subsequent TDC clock
edge, and Ting is the duration between the falling edge of inhibit and the subsequent clock
edge. These intervals are illustrated in figure 7.

({
/]

'Trismg' «THaling__
TDC clock J |_§§—|

CLK, CLK¢

inhibit

Figure 7. An illustration of the intervals Tiising and Ttajling.

To measure Tyising and Traiing the incoming inhibit signal is fed into a chain of 126
asynchronous delay elements (Delay Chain 126 in figure 6). This delay chain is tapped after
each element and the taps are clocked and sent to a binary encoder (see figure 8). The
output of the encoder is an 8-bit count of the number of taps asserted, which gives a
measure of the duration before that clock edge for which inhibit was asserted. When the
encoder is read on clock edge CLK; in diagram 7, this measurement corresponds to Tising.
When the encoder is read on clock edge CLK;, the measurement corresponds to the
complement of Tging. That is, Traing Can be calculated from the maximum possible number of
taps asserted (126) minus the measured number of taps asserted.

The process Capture Proc, shown in figure 6, registers the encoder values at the appropriate
times and performs the calculations necessary to obtain Tising, Tralling and hence Tpe. It is
driven by signals from Control Proc (see below).

Delay Chain 126
inhibit 1 1S 4 S S S ____
TDCclock {1 ¢ ([[_ _______
_
v \ 4 v \ 4 v
[Inh Encoder

8
binary value

Figure 8. The inhibit delay chain and encoder.

5.3 The measurement of T,ef

To calibrate the measurement Ty, it is necessary to compare it to the measurement of a
known period. This reference measurement is obtained by feeding the TDC clock into a
second delay chain, Delay Chain 140, which runs parallel to the inhibit delay chain in the
FPGA fabric. As with the inhibit chain, the reference chain is tapped and these signals are
clocked and sent to an encoder. However, here the encoder does not perform a simple
count of the number of asserted taps, but performs the more complex calculation described
below.

The reference encoder does not examine the full range of taps presented by Delay Chain
140. It examines only two windows that are centred on taps where consecutive rising edges
of the TDC clock are expected to be recorded. As the test signal in this case is the same as
the sampling clock, these rising edges will always be recorded at approximately the same
place in the chain. The position and width of the windows used by the reference encoder are
fixed, but have been determined by experimentation to give the least sensitivity to clock
jitter and drift.

Within these two windows the reference encoder counts the number of asserted taps, to
obtain a measure of the two intervals T; and T, shown in figure 9. From these, and the fixed
offset between the two sampling windows, T, the clock period T, can be calculated:

Trei = Twott + T1—T;

This measurement is captured by Capture Proc at the end of an inhibit signal, synchronously
with the capture of the Tt,ing measurement.

Note that in the document TOT measurement, Laurent Charles proposes measuring T, by
measuring the duration for which the clock signal is asserted and doubling this figure. Such a
method is only suitable if the duty cycle of the clock is at or close to 50%. Generally, this will
not be the case if the clock has been generated from one of a different frequency using a
DCM. For the TDC logic described here the clock is indeed generated in this way and it has a
duty cycle of approximately 30%. For this reason T,.s must be measured by examining the full
clock cycle rather than just the active part of it.

5.4 The generation of control signals

All of the control signals in the TDC logic are generated from the inhibit signal. For this
purpose the inhibit signal is sourced from the first tap of Delay Chain 126 and fed into a
pipeline of flip-flops, which hold a history of the signal. The process Control Proc examines
this history and generates the necessary control signals in relation to the rising and falling
edge of inhibit. From the rising edge it generates a load signal to capture Tiing; from the
falling edge it generates signals to capture Tgjing , Tref aNd Teourse, and it also generates
tot_valid. These signals are timed to account for the different latencies of the various
measurements.

To prevent TOT packets being generated for sync signals, which are transmitted on the same
line as inhibit but are only 10 ns long, tot_valid is generated only if sync/inhibit is asserted
for at least 20 ns (4 ticks of the TDC clock).

value A
Twoff

A
A 4

Wl W2

|

A 4

| >

kL» kL»

0 >

delay tap

Figure 9. The waveform of the TDC clock as seen in the reference delay chain. Shown
are the two windows of taps examined, W, and W,, the two measurements obtains
from these windows, T; and T,, and the offset between the two windows, Ty

5.5 The implementation of the delay chains

The two delay chains in the TDC, Delay Chain 126 and Delay Chain 140, are built using Xilinx
fast-carry chains. In order to obtain the necessary degree of consistency in the propagation
delays down the chains, they are implemented as relationally-placed macros. The two chains
are placed contiguously in the FPGA fabric, running parallel to each other. For more detail on
their structure see the document TOT measurement by Laurent Charles, which was used as a
guide in their construction.

To obtain valid measurements from the chains it is necessary that the propagation delay
down the entire chain be longer than one period of the TDC clock. In hardware tests the
5 ns clock period of the TDC clock was measured as 105 + 0.4 delay elements when the
device was cold (and 104 + 0.8 elements when the device was hot). For the inhibit delay
chain (Delay Chain 126) this gives an overhead of about 20 delay elements, or 16%. The
reference delay chain is implemented using a slightly longer chain than this, of 140
elements. This is necessary for the optimum placement of the measurement windows
described in section 5.3.

-10-

6 The Digitizer TOT Control Interface

The following is the slow control interface to the TOT-logic in the Digitizer firmware. Most of
the control and status bits here have been implemented in new registers occupying
previously vacant locations in the address map, as specified in EDOC705, Version date 25th
June 2009. In one case a new bit has been added to an existing Core register (bit 15 of the
Core Control Register, which was previously unused). For this register the bits that existed
previously, and are unrelated to the TOT logic, are shown in grey.

Note that some bits and registers are only implemented for channels where the loopback
and TOT Receiver logic are present (namely, Core channel 1). For channels without TOT
Receiver logic those register bits are unused; writing to them will have no effect and they
will always read zero. Any bits not explicitly specified in a register are also unused and will
respond in the same fashion.

Control Register — 0x0000 0000

. Laser Enable : set to enable laser

. Laser Disable : set to disable laser

. Laser Resetn : clear to reset Laser

. Operates LED 7.

. shdn_c : controls pre-amp signal

. Laser RX enable : set to enable the receiver part of the Laser

. Reset other DCMs to allow lock after connect the optical link

O O N UA WNR O

. Set to 1 to enable the inhibit signal to be transmitted.

10.

11. Set to 1 to reset the Trigger Block logic.

12. Set to 1 to reset the Sprom and re-read all the contents into RAM
13. Set to 1 to enable the RAM test.

14.

15. Set to 1 to reset the TOT TDC logic

TOT TX/RX channel 1 Registers — 0x0000 0050 to 0x0000 0056

Status — Offset 0x0
Read Only
0. TOT Rx Busy

Control Mode — Offset Ox1
Read/Write
0: Enable TOT Tx
1: Enable TOT Rx (where loopback implemented for channel)
2: TOT Tx test mode

-11-

Control Pulse — Offset 0x2
Always zero on read
0: test_valid (initiates transmission of test data from TOT Tx).
4: Reset TOT Tx (and Rx if implemented for this channel).

Test Data LSB — Offset 0x3
Read/Write
0-15: Lower 2 bytes of test data to transmit from TOT Tx.

Test Data MSB — Offset 0x4
Read/Write
0-15: Upper 2 bytes of test data to transmit from TOT Tx.

Data Rx LSB — Offset 0x5
Only implemented for channel with loopback logic
Read Only
0-15: Lower 2 bytes of most recent data received at TOT Rx.

Data Rx LSB — Offset 0x6
Only implemented for channel with loopback logic
Read Only
0-15: upper 2 bytes of most recent data received at TOT Rx.

TOT TX/RX channel 2 — 0x0000 0060 to 0x0000 0066

Details as per TOT TX/RX channel 1.

-12 -

