TDR Pattern Register User Manual

Contents

- 1. Introduction.
- 2. Function.
 - a. Block Diagram.
 - b. VME interface specification.
 - c. SHARC interface data format.
- 3. Setting up.
 - a. VME Address Jumpers
 - b. Input selection.
- 4. Operation
 - a. Single input mode
 - b. Gated Group
 - c. GroupA AND GroupB.
- 5. Software Interface.
- 6. Front Panel Interface.
- 7. Logic Inspection Signal examples.
- 8. What can stop the module working, or Error management.

Appendices

- A. Layout of the PCB with Jumper locations.
- B. Front Panel Layout.
- C. MIDAS control window.

Refers to pcb 25/9275A.

1. Introduction

The Pattern Register is a single w idth VME module designed to operate in the GREAT TDR environment. There are two groups of 16 inputs, A and B. The purpose of the module is to regist er the changes on the inputs, and send a timestamped 16 bit pattern to the Data Acquisition system via a SHARC link. The timestamp refers to the selected edge of the input. The two groups can be set to one of three specific digital interface types. Fast NIM, Differential ECL, and Single ended ECL.

The Pattern input is operated as two Groups, each in one of three operating m odes. All the pattern inputs are AND' ed with a programm able m ask bit, which allows individual bits to be disabled, for exam ple where one input is firing in noise. GroupA can be pulse stretched under computer control.

1. Gated Group:

The front edge of the Gr oup Gate input will latch the master 100MHz counter and all inputs which are active at any time during the Group Gate will be included in the pattern. The pattern and timestamp is output at the end of the Gate.

2. Individual inputs:

- a) The 16 pattern inputs of the Gr oup are individually sam pled on every clock. Thos e that becam e active s ince the previous clock generate a timestamp along with a label to say wh ich of the 16 i nputs caused the timestamp.
- b) In this m ode the user m ay choose (under com puter control) to AND the input with the Group Gate.
- c) GroupA AND GroupB. This mode uses the GroupA and GroupB inputs to provide 16 bits of co-incidence pattern. A timestamp is generated when the input from GroupA AND GroupB are true to-gether.

The Ti mestamp is based on a counter increm ented by a 100Mhz clock and kept in synchronism with the rest of the T DR system by the SYNC pulse provided by the GREAT TDR system Metronome module.

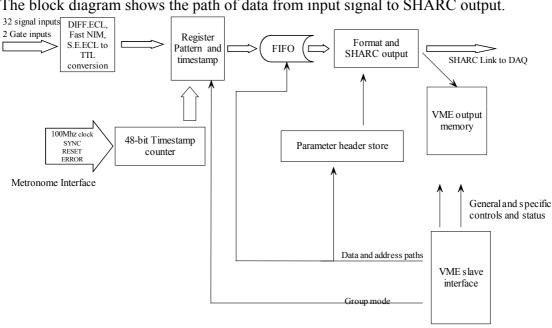
The Pattern Register is designed to operate at an average input rate of 10Khz per input. The maximum burst rate into one input is 10Mhz. The minimum input pulse width for reliable operation is 50ns, howev er m uch s maller input pulses can be registered.

The following docum ents will h elp in unders tanding the term s discussed in th is manual. They can be found at the Nuclear Physics Group web site : <u>http://npg.dl.ac.uk</u>

EDOC502 The GREAT Triggerless Total Data Readout Method (IEEE TNS, VOL. 48, NO. 3, JUNE 2001) EDOC503 The GREAT 32 Channel Peak Sensing ADC : User Manual EDOC504 The GREAT data format. EDOC507 The GREAT TDR system Error recovery, and experiment timing EDOC511 Metronome User Manual Version6 (C1100)

2. Function

The function of the module is carried out by two Altera FPGA devices programmed at power-up from serial EPROMs. There is an LED for each FPGA which is lit when the programming has completed successfully.


The user of the module must decide the interface type for each of the 16 inputs in the two Groups. The jum pers must then be set accordingly. Refer to section 3.b and appendix A for setting the different interface choices.

The inputs to be reg istered are chosen by using the MIDAS interface window. See appendix C for an example of the window for the Pattern Register.

The sense of each input can be inverted, controlled via MIDAS, prior to being applied to the Register timestamp logic. This allows the user to decide which edge of the input signal causes the tim estamp. It is always the rising edge of the input that is timestamped.

As mentioned in the introduction each group operates in one of two modes. The mode must be selected via the MIDAS interface.

To operate the module must be connected to a TDR Metronom e output, or a similar source of 100Mhz, and SYNC pulses.

a. Block Diagram

The block diagram shows the path of data from input signal to SHARC output.

GREAT Pattern Register P.J.Coleman-Smith

b. VME interface specification

The Pattern Register is an A32/D3 2 slave. The interface will respond to acces ses made using D16, and D08, however they will not return the correct values. The Pattern Register o ccupies 2¹⁶ bytes in A32 m emory space. T he address of

location 0 is specified by jum pers set on the pcb. See section 3.a and appendix A for setting the address base.

c. SHARC interface data format.

The Pattern Register outputs two 32 bit words for every Item. An Item can be for an input transition from Gr oupA, or GroupB, a SY NC pulse, a flow control Pause, or a flow control Resum e. Refer to E DOC504 for m ore inform ation about the bit allocation of these two words.

Here is an outline of the Item format extracted from the EDOC.

Group Pattern Data format

31	30	29	28	27 to 16	15 to 0
1	1	0	0	Data Source Ident, Pattern data	
	31 to 28			27 to 0	
		0		Time Sta	amp 27:0

Other Information.

31	30	29 to 24		23 to 20	19 to 0
1	0	Module Number		Information	Information Field
				Code	
	31 to 28				27 to 0
	0			Tim	e Stamp 27:0

The Module number identifies the source of the information.

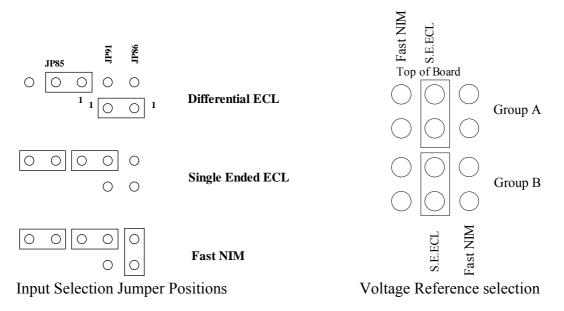
The information codes used in the Pattern Register are as follows.				
Information Type	Code	Information Field Definition		
Undefined Data	0			
Pause Timestamp	2	Timestamp bits 47 : 28		
Resume Timestamp	3	Timestamp bits 47 : 28		
SYNC100 Timestamp	4	Timestamp bits 47 : 28		

The Information codes used in the Pattern Register are as follows:

3. Setting Up

a. VME Address Jumpers.

Refer to the picture of the m odule shown in Appendix A. The VME address jum pers are in two, eight jum per blocks at the middle of the top of the pcb. The address of location 0 of the module address space is specified by placing, or not, shorting links ion the jum pers. Placing a shorting link on a jumper will select that address bit to be seen as a logic 0.


For example to select address 0x80000000 for the base address, shorting links should be placed on every jumper except the one for A31. (This is the jumper at the left most end of the row, as indicated by the white writing).

b. Input Selection

Each of the 32 inputs can be selected to interface to signals of one of three types. Fast NIM, Differential ECL, and Single ended ECL. The following jumper diagrams show how to select each of the possible types.

Differential ECL does not require a specific reference voltage selected, but the Fas t NIM, and Single Ended ECL do.

It is important to note that all the inputs for a group should be set to the same interface type. Failu re to do this will result in incorrect reference voltages being used, and unpredictable register operation ;-)

When connecting to the front panel inputs use the following signal allocations with the 34 pin IDC connectors.

Input 0 in <u>*Differential ECL*</u> mode pin1 is the +ve input, and pin 2 the –ve. This carries on through the connector with Input 15 on pin 31 for +ve and pin 32 for –ve. Pins 33, and 34 are not connected on both Group A and B input connectors.

Input 0 in *Fast NIM*, and *Single Ended ECL* mode pin1 is the Signal input, and pin 2 the GND. This carries on through the conne ctor with Input 15 on pin 31 for Signal input and pin 32 for GND. Pins 33, and 34 are not connected on both Group A and B input connectors.

4. Operation

The mode of operation applies to all the inputs of a Group. The mode is selected using the MIDAS interface.

The operation of the module is handled by the MIDAS interface, and would norm ally only require the user to select the inputs, their polarity, and the Group Modes. If the module is to be operated in an environm ent not controlled by MIDAS, then a m uch deeper understanding of the m odule function is required than is covered in this version of the user manual. Contact the author for help.

To operate within the MIDAS environment the module must be configured in the VME address space, and the correct Group In terface jumper settings selected for the inputs. The module is entered in the VME configuration table accessed via the VME control window. This allows the MIDAS to set-up and control the module.

With the SHARC link connected to the TDR Collator processor, and the Me tronome interface connected the module will be set-up by the MIDAS with initial values in all the registers, and valid entries for the module readout identifiers.

Use the Experiment Control window Setup and Go buttons.

The mode of operation of the two groups of inputs is controlled by m enu selection in the MIDAS interface. The tab le below gives the valid m odes. A# refers to the input number within the group A.

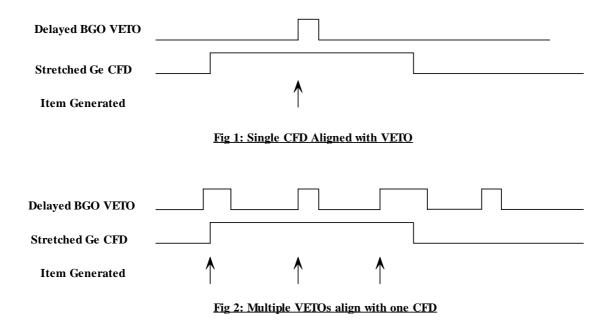
Value	Mode name	Comment	
0	Single: input(A/B)# AND Gate(A/B)		
1	Single: input(A/B)#		
2	Gated Group		
4	Single : A# AND B# AND GateA	Group A input only	
5	Single : A# AND B# Group A input on		
6	Gated Group : A# AND B#	Group A input only	
12	Single : Stretched A# AND B# AND GateA	Group A input only	
13	Single : Stretched A# AND B#	Group A input only	

a. Single Input mode.

In this mode each input operates alone. E ach input must be enabled via the MIDAS interface. The Group Gate input can be selected to be AN Ded with the inputs. This selection operates for the whole of a group.

b. Gated Group.

The front edge of the Group Gate in put will latch the master 100MHz counter and all inputs which are active at any time during the Group Gate will be in cluded in the pattern. The Group Gate input is a Fast NIM signal.


c. GroupA AND GroupB, or Using the TDR Pattern Register for providing timed suppression data.

The purpos e is to combine the VETO signal from the Eurogam Phase 1 BGO detectors and electronics with a Ge CFD to give a timestamped data item indicating the co-incidence of the two signals.

The Pattern Register 32 inputs are allocated as two groups of 16. Group B is used for the Single Ended ECL VETO signals from the BGO electronics, and Group A is used for the Fast NIM Ge CFDs from the LeCroy CFD modules.

The Ge CFD signals a re str etched in the Pattern Registe r to align the m with the slower VETO signals. Fig 1 shows when the timestamped Item is generated for a single CFD and VETO.

It should be noted that a timestamped Item will be gene rated for <u>every</u> coincidence between the VETO, and CFD. Fig 2 show s how this can occur during m ultiple VETOs

When setting up for an experim ent it will be necessary to check the alignment of the Ge CFD and VETO signals, as well as the width of the CFD.

Logic Inspection Lines are provided in each Pattern Register for this job.

The width of the CFD output pulse will also affect the number of co-incidences.

5. Software Interface

Access to the registers on the Pattern Re gister are via the V ME bus interface using A32/D32 commands. The register s are defined in the table in Appendix E at the end of this docum ent. For further information about register function contact the author via email.

The normal method of control is via the MIDAS control window. The module should be initialized after power-up with registers set as follows.

6. Front Panel Interface

The front panel layout is shown in a diagram in Appendix B. The connections are detailed in the following Tables.

Pin	Function	Source
1	Clock	Pattern Register
2	Acknowledge	VME Processor
3	GND	
4	Data 0	Pattern Register
5	Data 1	Pattern Register
6	Data 2	Pattern Register
7	Data 3	Pattern Register
8	GND	

Pin	Function	Pin	Function
1	Input 0 +ve	2	Input 0 -ve
3	Input 1 +ve	4	Input 1 –ve
31	Input 15 +ve	31	Input 15 –ve
33	No Connection	34	No Connection

Group Inputs (A/B) Differential ECL Interface

Group Inputs (A/B) Single Ended ECL Interface

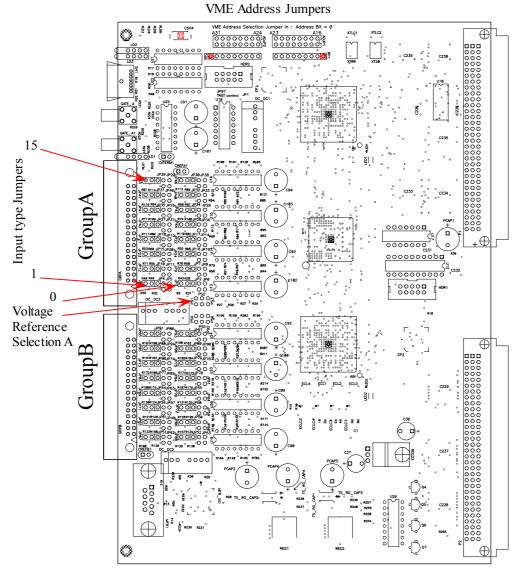
Pin	Function	Pin	Function
1	Input 0	2	Ground
3	Input 1	4	Ground
31	Input 15	31	Ground
33	No Connection	34	No Connection

Group Inputs (A/B) Fast NIM Interface

Pin	Function	Pin	Function
1	Input 0	2	Ground
3	Input 1	4	Ground
31	Input 15	31	Ground
33	No Connection	34	No Connection

7. Logic Inspection Signal examples

During normal use of the module the inputs, and Gate signals are the most likely to be required. The examples show which edge of the signal as seen through the Inspection Lines generates the Timestamp.


8. What can stop the module working, or Error management.

1. Lost Track.

Refer to the block diagram in section 2.a. There is a FIFO between the timestamping input stage, and the formatting and SHARC link stage. The data is placed into the FIFO with a four bit count to keep track of the data through the FIFO. If the data coming through the FIFO is not in step, then the module will stop working, the Lost Track LED will light, and the relevant bit is set in the status register. The operation of the module is restarted by a system STOP/SETUP/GO action.

2. Using the wrong edge of the input for timing.

3. Appendix A Jumper Layout

Outline of the Pattern Register for location of Jumpers.

Appendix B Front Panel Layout

Front Panel for 25/9275 All Dimensions in mm All hole sizes are for finished size.

Appendix C MIDAS control window.

Appendix D Logic Inspection signal examples.

Appendix E Software Register definitions.

Register definitions:

Address offset Hexadecimal	Name	Function
0	Module Control	 0 : ignore track. 1= Ignore the tracking data when reading FIFO 1 : SHARC enable. 1 = Enable SHARC link readout of the FIFO. 2 : Reset FIFO 3 : STARX enable. 1= Enable STARX to reset FIFO. 4 : Soft Reset input chip. 5 => 15 : registered data, but no action. 16 => 31 : always return 0.
4	Module Status	0 : interrupt. 1 : lost track. 2 : FIFO Half full. 3 => 31 : Always return 0.
8	Interrupt Control	0 => 7 : Interrupt vector. 8 => 10: Select IRQ line to drive on VME bus. 11 => 15 : registered data, but no action. 16 => 31 : always return 0.
С	Interrupt Select	 0 => 3 : Select Interrupt source. 0: Lost Track. 1: FIFO half full. 2 => 15 not defined. 4: Method. 0 = Edge triggered, 1 = Level Triggered 5: Edge. 0 = Rising edge, 1 = falling edge. 6: Level. 0 = High Level, 1 = Low level. 7: Enable 0 = Disabled, 1 = Enabled. 8 => 15 : registered data, but no action. 16 => 31 : always return 0.
10	Read FIFO	$0 \Rightarrow 31$: FIFO output data.
14	Read Tracking Registers	0 => 3 : Readout track Counter 4 => 7 : Track number from FIFO. 8 => 11 : ID track number from last ID word. 12 => 15 : Track number from last Time stamp. 16 => 31: 0.
18	FIFO Flags	All these flags are active low.0 : Almost full.7 spaces remaining.1 : Almost empty.7 words written.2 : Half full.131,072 words written3 : Empty.262,144 words written5 => 31 : 0.
1C	Spare Bus	0 => 31 : VME chip end of Spare connections between the two Alteras
100	Group A input enable	Bits $15 \Rightarrow 0$ enable an input when set.

104	Group A Invert	Bits $15 \Rightarrow 0$ invert the logic of the input bit when set.		
108	Group A mode	Selects registered/free/free & Gate mode.		
	_	0: Free Transition Mode. 1= enabled.		
		1: Registered Mode. $1 = $ enabled.		
		2: AND mode (CFD + VETO) 1= enabled.		
		3: Stretch input pulses. $1 = enabled$.		
110	Group A Stretch value	Bits $3 \Rightarrow 0$ select the pulse stretch value in steps of 50ns.		
200	Group B input	Bits $15 \Rightarrow 0$ enable an input when set.		
	enable	1		
204	Group B Invert	Bits $15 \Rightarrow 0$ invert the logic of the input bit when set.		
208	Group B mode	Selects registered/free/free & Gate mode.		
300	Inspection Line 0	Selects the signal source		
304	Inspection Line 1	Selects the signal source		
308	Inspection Line 2	Selects the signal source		
30C	Inspection Line 3	Selects the signal source		
300				
400	Input Chip control	0 : Reset input FIFOs		
		1 : Count Enable. 1 = Enable Time stamp counter.		
		2 : SYNC error reset.		
		3 : SYNC to Error (STARY) connect.		
		4 : No effect, but registered.		
		5 : Run Enable. 1 = Enable input of SYNC, and Data to the		
		FIFOS.		
		$6 \Rightarrow 15$: registered data, but no action.		
		$16 \Rightarrow 31$: always return 0.		
404	Input Status	Timestamp errors and others (NYI !!!)		
FUF	input Status			
500	Time FIFO LS	$0 \Rightarrow 31$: Time stamp bits $0 \Rightarrow 31$.		
504	Time FIFO MS	0 => 15 : Timestamp bits $32 => 47$.		
		16 => 31 : 0.		
508	Time FIFO word	$0 \Rightarrow 8$: Number of words in the Timestamp FIFO		
	count			
50C				
510	Group A fifo data	0 => 15 : Group A Pattern 16 => 31 : 0		
514				
518	Group A fifo word	$0 \Rightarrow 8$: Number of words in the Group A FIFO		
• • •	count	$16 \Rightarrow 31:0$		
51C				
520	Group B fifo data	$0 \Rightarrow 15$: Group B Pattern		
	1	16 => 31 : 0		
524				
528	Group B fifo word	$0 \Rightarrow 8$: Number of words in the Group B FIFO		
	count	16 => 31 : 0		
52C				
530	Type fifo data	0 => 7 : Event type data. 8 => 31 : 0.		
534		0 < 51.0.		
538	Type fifo word	$0 \Rightarrow 8$: Number of words in the Event type FIFO		
330	count	$16 \Rightarrow 31:0$		
53C				
540	Group A Ident	$0 \Rightarrow 31$: Ident for Group A pattern.		
544	Group B Ident	$0 \Rightarrow 31$: Ident for Group B pattern.		
548	SYNC Ident	$0 \Rightarrow 31$: Ident for SYNC.		
54C	Pause Ident	$0 \Rightarrow 31$: Ident for STIVE.		
550	Resume Ident	$0 \Rightarrow 31$: Ident for Pause.		
554	Undefined Ident	$0 \Rightarrow 31$: Ident for Kesuffe. $0 \Rightarrow 31$: Ident for Undefined.		
554	0 = -31. Ident 101 Ondernied.			

558	Write to FIFO.	$0 \Rightarrow 31$: write to FIFO.
55C		
560	FIFO flags	 0 : Group A FIFO empty 1 : Group A FIFO full 2 : Group B FIFO empty 3 : Group B FIFO full 4 : Control FIFO empty 5 : Control FIFO full. 6 : Timestamp FIFO full. 6 : External FIFO almost full. 9 : External FIFO full. 10 => 31 : 0
600 700	Load Timestamp Spare bus read	 Load a new value into the Timestamp counter for loading at a re-sync SYNC pulse. 0 => 31 : Data for new Timestamp 16 => 47 value. A write to this register sets the Re_SYNC enable. 0 => 31 : Input chip end of Spare connections between the two Alteras.

Appendix F. Logic Inspection Line signal selection.

Logic Inspection Line Signal selection. This inform ation is provided for completeness, it is not intended for a us er to need to vie w the m ajority of thes e signals.

Code	Signal Name	Description
0 => 1F	Disconnected	Allows other units to drive the line.
20 => 2F	Group A inputs	Input monitors for Group A.
	0 => 15	
30 => 3F	Group B inputs	Input monitors for Group B.
	0 => 15	
40	Group B Hit	Group B Pattern hit.
41	Group B End	Group B Gated mode End signal
42	Gate A	Group A Gate input.
43	Gate B	Group B Gate input.
44	Sync pulse	Sync detected 10nS pulse
45	Sync error	Sync error flag
46	Aneb	Output of Timestamp sync comparator
47	Re-load window	Window a fter S YNC pulse during which a re-load
		can occur.
48	Load stamp	Re-load pu lse. Loads the new value into the
		Timestamp counter
49	Load Enable	Indicates a re-load has been programmed.
4A	Time FIFO read	FIFO read request signal for the Timestamp FIFO
4B	Time FIFO full	Flag
4C	Time FIFO	Flag
	empty	
4D	Group A FIFO	FIFO read request signal for the Group A FIFO
	read	
4E	Group A FIFO	Flag

	full	
4F	Group A FIFO	Flag
	empty	
50	Group B FIFO	FIFO read request signal for the Group B FIFO
	read	
51	Group B FIFO	Flag
	full	
52	Group B FIFO	Flag
	empty	
53	Time FIFO	FIFO write request for the Timestamp FIFO
	write	
54	Group A FIFO	FIFO write request for the Group A FIFO
	write	
55	Group B FIFO	FIFO write request for the Group B FIFO
	write	
56	Pause	Pause signal
57	Resume	Resume signal
58	Type FIFO read	FIFO read request signal for the Type FIFO
59	Type FIFO full	Flag
5A	Type FIFO	Flag
	empty	
5B	SYNC	SYNC pulse from the Metronome
5C	STARX	STARX (Reset) from the Metronome
5D	Out of step	Internal FIFOs are out of step ??????
5E	Ext FIFO write	FIFO Write clock to the external FIFO
	clock	
5F	Ext FIFO write	FIFO Write request to the external FIFO
60	Ext FIFO almost	Flag (active low)
	full	
61	Ext FIFO full	Flag (active low)
62	Group A Hit	Group A Pattern hit.
63	Group A End	Group A Gated mode End signal
70 => 7F	Group A	The Stretched inputs for Group A.
	stretched 0 =>	
0.0	15	
80	Loadreg	Load signal, enables reg isters when selected to load
01	China 1 t	data
81	Chip select	Active to select vme access to the input chip
82	Asn	VME address strobe
83	DS0n	VME Data strobe 0
84	DS1n	VME Data strobe 1
85		VME data asknowladza
86	DTACK	VME data acknowledge
87	STARX	VME Interment color cycle dec cycle : 1t:for
88	Iackn	VME Interrupt acknowledge cycle identifier
89	Irq1	Interrupt line
8a 8b	Irq2	Interrupt line
8b	Irq3	Interrupt line
8c	Irq4	Interrupt line

8d	Irq5	Interrupt line
8e	Irq6	Interrupt line
8f	Irq7	Interrupt line
90	Iackinn	Interrupt cycle chain token in
91	Iackoutn	Interrupt cycle chain token out
92	Sharc clock	SHARC bus clock pulses.
93	Sharc ack	SHARC bus acknowledge
94	Sharc data0	SHARC data bit
95	Sharc data1	
96	Sharc data2	
97	Sharc data3	
98 – 9f	NYI	
A0	Fifo pafn	FIFO programmable almost full
A1	Fifo paen	FIFO programmable almost empty
A2	Fifo hfn	FIFO Half empty
A3	Fifo ffn	FIFO full
A4	Fifo efn	FIFO empty
A5	Fifo erclk	Fifo erclk ?????
A6	Fifo erenn	Fifo erenn ????
A7	Fifo rclk	Fifo read clock
A8	Fifo rcsn	Fifo read chip select
A9	Fifo renn	Fifo read enable
Aa	Fifo oen	Fifo output enable
Ab	Fifo prsn	Fifo partial reset
Ac	Fifo mrsn	Fifo master reset
Ad	Fifo ready	Fifo data has been read, and is ready for use
Ae	Fifo rdreq	Request from sharc software for a fifo read
Af	Vme req	Request from vme for a read of fifo data
B0	Lost track	Output of the track comparison system ?